Predicting suicidal behavior without asking about suicidal ideation: machine learning and the role of borderline personality disorder criteria

Adam Horvath*, Mark Dras, Catie C. W. Lai, Simon Boag

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

Objective: Identifying predictors contributing to suicide risk could help prevent suicides via targeted interventions. However, using only known risk factors may not yield accurate enough results. Furthermore, risk models typically rely on suicidal ideation, even though people often withhold this information. 

Method: This study examined the contribution of various predictors to the accuracy of six machine learning models for identifying suicidal behavior in a prison population (n = 353), including borderline personality disorder (BPD) and antisocial personality disorder (APD) criteria, and compared how excluding data about suicidal ideation affects accuracy. 

Results: Results revealed that gradient tree boosting accurately identified individuals with suicidal behavior, even without relying on questions about suicidal ideation (AUC = 0.875, F1 = 0.846). Furthermore, the model maintained this accuracy with only 29 predictors. Meeting five or more diagnostic criteria of BPD was an important risk factor for suicidal behavior. APD criteria, in the presence of other predictors, did not substantially improve accuracy. Additionally, it may be possible to implement a decision tree model to assess individuals at risk of suicide, without focusing upon suicidal ideation. 

Conclusions: These findings highlight that modern classification algorithms do not necessarily require information about suicidal ideation for modeling suicide and self-harm behavior.

Original languageEnglish
Pages (from-to)455-466
Number of pages12
JournalSuicide and Life-Threatening Behavior
Volume51
Issue number3
Early online date13 Nov 2020
DOIs
Publication statusPublished - Jun 2021

Keywords

  • suicide prevention
  • borderline personality disorder
  • machine learning
  • prediction
  • classification
  • bpd
  • tree boosting

Fingerprint

Dive into the research topics of 'Predicting suicidal behavior without asking about suicidal ideation: machine learning and the role of borderline personality disorder criteria'. Together they form a unique fingerprint.

Cite this