TY - GEN
T1 - Predictions in the eye of the beholder
T2 - Conference on Artificial Life (2020)
AU - Baltieri, Manuel
AU - Buckley, Christopher L.
AU - Bruineberg, Jelle
N1 - Copyright the Publisher 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2020/7
Y1 - 2020/7
N2 - Active inference introduces a theory describing action-perception loops via the minimisation of variational free energy or, under simplifying assumptions, (weighted) prediction error. Recently, active inference has been proposed as part of a new and unifying framework in the cognitive sciences: predictive processing. Predictive processing is often associated with traditional computational theories of the mind, strongly relying on internal representations presented in the form of generative models thought to explain different functions of living and cognitive systems. In this work, we introduce an active inference formulation of the Watt centrifugal governor, a system often portrayed as the canonical “anti-representational” metaphor for cognition. We identify a generative model of a steam engine for the governor, and derive a set of equations describing “perception” and “action” processes as a form of prediction error minimisation. In doing so, we firstly challenge the idea of generative models as explicit internal representations for cognitive systems, suggesting that such models serve only as implicit descriptions for an observer. Secondly, we consider current proposals of predictive processing as a theory of cognition, focusing on some of its potential shortcomings and in particular on the idea that virtually any system admits a description in terms of prediction error minimisation, suggesting that this theory may offer limited explanatory power for cognitive systems. Finally, as a silver lining we emphasise the instrumental role this framework can nonetheless play as a mathematical tool for modelling cognitive architectures interpreted in terms of Bayesian (active) inference.
AB - Active inference introduces a theory describing action-perception loops via the minimisation of variational free energy or, under simplifying assumptions, (weighted) prediction error. Recently, active inference has been proposed as part of a new and unifying framework in the cognitive sciences: predictive processing. Predictive processing is often associated with traditional computational theories of the mind, strongly relying on internal representations presented in the form of generative models thought to explain different functions of living and cognitive systems. In this work, we introduce an active inference formulation of the Watt centrifugal governor, a system often portrayed as the canonical “anti-representational” metaphor for cognition. We identify a generative model of a steam engine for the governor, and derive a set of equations describing “perception” and “action” processes as a form of prediction error minimisation. In doing so, we firstly challenge the idea of generative models as explicit internal representations for cognitive systems, suggesting that such models serve only as implicit descriptions for an observer. Secondly, we consider current proposals of predictive processing as a theory of cognition, focusing on some of its potential shortcomings and in particular on the idea that virtually any system admits a description in terms of prediction error minimisation, suggesting that this theory may offer limited explanatory power for cognitive systems. Finally, as a silver lining we emphasise the instrumental role this framework can nonetheless play as a mathematical tool for modelling cognitive architectures interpreted in terms of Bayesian (active) inference.
M3 - Conference proceeding contribution
T3 - Artificial Life Conference Proceedings
SP - 121
EP - 129
BT - ALIFE 2020
PB - MIT Press
CY - Virtual
Y2 - 13 July 2020 through 18 July 2020
ER -