Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars

M. R. Walter*, David J. Des Marais

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    179 Citations (Scopus)


    Current interpretations of the early history of Mars suggest many similarities with the early Earth and therefore raise the possibility that the Archean and Proterozoic history of life on Earth could have a counterpart on Mars. Terrestrial experience suggests that, with techniques that can be employed remotely, ancient springs, including thermal springs, could well yield important information. By delivering water and various dissolved species to the sunlit surface of Mars, springs very likely created an environment suitable for life, which could have been difficult, if not impossible, to attain elsewhere. The chemical and temperature gradients associated with thermal springs sort organisms into sharply delineated, distinctive and different communities, and so diverse organisms are concentrated into relatively small areas in a predictable and informative fashion. A wide range of metabolic strategies are concentrated into small areas, thus furnishing a useful and representative sampling of the existing biota. Mineral-charged springwaters frequently deposit chemical precipitates of silica and/or carbonate which incorporate microorganisms and preserve them as fossils. The juxtaposition of stream valley headwaters with volcanoes and impact craters on Mars strongly implies that subsurface heating of groundwater created thermal springs. On Earth, thermal springs create distinctive geomorphic features and chemical signatures which can be detected by remote sensing. Spring deposits can be quite different chemically from adjacent rocks. Individual springs can be hundreds of meters wide, and complexes of springs occupy areas up to several kilometers wide. Benthic microbial mats and the resultant stromatolites occupy a large fraction of the available area. The relatively high densities of fossils and microbial mat fabrics within these deposits make them highly prospective in any search for morphological evidence of life, and there are examples of microbial fossils in spring deposits as old as 300 Myr.

    Original languageEnglish
    Pages (from-to)129-143
    Number of pages15
    Issue number1
    Publication statusPublished - Jan 1993


    Dive into the research topics of 'Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars'. Together they form a unique fingerprint.

    Cite this