TY - JOUR
T1 - Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation
AU - Tsai, Emily J.
AU - Liu, Yuchuan
AU - Koitabashi, Norimichi
AU - Bedja, Djahida
AU - Danner, Thomas
AU - Jasmin, Jean Francois
AU - Lisanti, Michael P.
AU - Friebe, Andreas
AU - Takimoto, Eiki
AU - Kass, David A.
N1 - Copyright the Publisher 2012. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2012/1/20
Y1 - 2012/1/20
N2 - Rationale: Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO-sGC-cGMP signaling blunts cardiac stress responses, including pressure-overload-induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis. Objective: We tested the hypothesis that the sGC response to NO also declines with pressure-overload stress and assessed the role of heme-oxidation and altered intracellular compartmentation of sGC as potential mechanisms. Methods and Results: C57BL/6 mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and dysfunction. NO-stimulated sGC activity was markedly depressed, whereas NO-and heme-independent sGC activation by BAY 60-2770 was preserved. Total sGCα 1 and β 1 expression were unchanged by TAC; however, sGCβ 1 subunits shifted out of caveolin-enriched microdomains. NO-stimulated sGC activity was 2-to 3-fold greater in Cav3-containing lipid raft versus nonlipid raft domains in control and 6-fold greater after TAC. In contrast, BAY 60-2770 responses were >10 fold higher in non-Cav3 domains with and without TAC, declining about 60% after TAC within each compartment. Mice genetically lacking Cav3 had reduced NO-and BAY-stimulated sGC activity in microdomains containing Cav3 for controls but no change within non-Cav3-enriched domains. Conclusions: Pressure overload depresses NO/heme-dependent sGC activation in the heart, consistent with enhanced oxidation. The data reveal a novel additional mechanism for reduced NO-coupled sGC activity related to dynamic shifts in membrane microdomain localization, with Cav3-microdomains protecting sGC from heme-oxidation and facilitating NO responsiveness. Translocation of sGC out of this domain favors sGC oxidation and contributes to depressed NO-stimulated sGC activity.
AB - Rationale: Soluble guanylyl cyclase (sGC) generates cyclic guanosine monophophate (cGMP) upon activation by nitric oxide (NO). Cardiac NO-sGC-cGMP signaling blunts cardiac stress responses, including pressure-overload-induced hypertrophy. The latter itself depresses signaling through this pathway by reducing NO generation and enhancing cGMP hydrolysis. Objective: We tested the hypothesis that the sGC response to NO also declines with pressure-overload stress and assessed the role of heme-oxidation and altered intracellular compartmentation of sGC as potential mechanisms. Methods and Results: C57BL/6 mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and dysfunction. NO-stimulated sGC activity was markedly depressed, whereas NO-and heme-independent sGC activation by BAY 60-2770 was preserved. Total sGCα 1 and β 1 expression were unchanged by TAC; however, sGCβ 1 subunits shifted out of caveolin-enriched microdomains. NO-stimulated sGC activity was 2-to 3-fold greater in Cav3-containing lipid raft versus nonlipid raft domains in control and 6-fold greater after TAC. In contrast, BAY 60-2770 responses were >10 fold higher in non-Cav3 domains with and without TAC, declining about 60% after TAC within each compartment. Mice genetically lacking Cav3 had reduced NO-and BAY-stimulated sGC activity in microdomains containing Cav3 for controls but no change within non-Cav3-enriched domains. Conclusions: Pressure overload depresses NO/heme-dependent sGC activation in the heart, consistent with enhanced oxidation. The data reveal a novel additional mechanism for reduced NO-coupled sGC activity related to dynamic shifts in membrane microdomain localization, with Cav3-microdomains protecting sGC from heme-oxidation and facilitating NO responsiveness. Translocation of sGC out of this domain favors sGC oxidation and contributes to depressed NO-stimulated sGC activity.
UR - http://www.scopus.com/inward/record.url?scp=84856050272&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.111.259242
DO - 10.1161/CIRCRESAHA.111.259242
M3 - Article
C2 - 22095726
AN - SCOPUS:84856050272
SN - 0009-7330
VL - 110
SP - 295
EP - 303
JO - Circulation Research
JF - Circulation Research
IS - 2
ER -