Privacy-preserving cooperative localization in vehicular edge computing infrastructure

Rathin Chandra Shit, Suraj Sharma, Paul Watters, Kumar Yelamarthi, Biswajeet Pradhan, Richard Davison, Graham Morgan, Deepak Puthal*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Advancement of computing and communication techniques transforms the traditional transport system into the intelligent transportation system (ITS). The development of distributed computing in a vehicular network platform also called Vehicular Edge Computing (VEC) promise to address most of the challenges faced by the ITS. Localization is important in these vehicular networks because of its key contribution in autonomous driving, smart traffic monitoring, and collision avoidance services. For localization, current GPS and hybrid methods are in-efficient because of GPS outage in urban infrastructure and dynamic nature of the vehicular networks. The cooperative localization approaches, on the other hand, use dedicated short range communication to broadcast messages and estimate location. However, these messages are un-encrypted and periodic which gives a privacy risk for vehicles. This article presents a privacy-preserving cooperative localization in vehicular network based upon dynamic pseudonym changing strategy. First, the localization delay is addressed with the implementation of dynamic vehicular edge assignment for computational task management. In the next step, the localization is estimated from the neighbor and road side unit ranging measurement followed by a real-time prediction of the vehicle. The performance of the proposed algorithms is analyzed in terms of localization accuracy and privacy preservation strength. Furthermore, the proposed method is simulated in a real city scenario followed by localization accuracy and privacy analysis. Finally, the localization accuracy and privacy strength of the proposed approach are compared with the state-of-the-art methods.

Original languageEnglish
Article numbere5827
Number of pages18
JournalConcurrency Computation
DOIs
Publication statusE-pub ahead of print - 13 Jun 2020
Externally publishedYes

Keywords

  • cooperative localization
  • distributed localization
  • intelligent transportation system
  • privacy-preserving localization
  • vehicular edge computing

Fingerprint

Dive into the research topics of 'Privacy-preserving cooperative localization in vehicular edge computing infrastructure'. Together they form a unique fingerprint.

Cite this