TY - JOUR
T1 - Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury
AU - Rayner, Ben S.
AU - Duong, Thi Thuy Hong
AU - Myers, Simon J.
AU - Witting, Paul K.
PY - 2006
Y1 - 2006
N2 - Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. Cultured neuronal cells exposed to hypoxia-reoxygenation (H/R) injury, as a model for stroke, yield a burst of reactive oxygen species (ROS) as measured with electron paramagnetic resonance (EPR) spectroscopy in combination with spin trapping. Added superoxide dismutase inhibited spin-adduct formation verifying that superoxide radical anion was formed in neuronal cells following H/R injury. The intracellular ADP/ATP ratio increased rapidly over the first 5 h following injury and this was q2due primarily to the decreased cellular pools of ATP, consistent with the notion that H/R promotes mitochondrial dysfunction leading to decreased ATP reserve and increased ROS formation. As an early response to the enhanced oxidative stress, genes encoding for hypoxia-inducible factor 1-α (HIF1-α), inducible haemoxygenase-1 (HO-1), and the oxygen-sensor neuroglobin increased significantly. Up-regulation of the HO-1 gene was paralleled by increased HO protein expression and activity. Despite this cellular response, apoptosis increased significantly following H/R injury indicating that the endogenous anti-oxidant defenses were unable to protect the cells. In contrast, addition of a phenolic anti-oxidant, bisphenol (BP), prior to H/R injury, inhibited ROS production and gene regulation and significantly decreased neuronal cell apoptosis. Added BP was converted stoichiometrically to the corresponding diphenoquinone indicating the synthetic anti-oxidant effectively decreased oxidative stress through a radical scavenging mechanism. Together, these data indicate that BP has the potential to act as a neuro-protective drug.
AB - Oxidative stress is associated with the pathology of acute and chronic neurodegenerative disease. Cultured neuronal cells exposed to hypoxia-reoxygenation (H/R) injury, as a model for stroke, yield a burst of reactive oxygen species (ROS) as measured with electron paramagnetic resonance (EPR) spectroscopy in combination with spin trapping. Added superoxide dismutase inhibited spin-adduct formation verifying that superoxide radical anion was formed in neuronal cells following H/R injury. The intracellular ADP/ATP ratio increased rapidly over the first 5 h following injury and this was q2due primarily to the decreased cellular pools of ATP, consistent with the notion that H/R promotes mitochondrial dysfunction leading to decreased ATP reserve and increased ROS formation. As an early response to the enhanced oxidative stress, genes encoding for hypoxia-inducible factor 1-α (HIF1-α), inducible haemoxygenase-1 (HO-1), and the oxygen-sensor neuroglobin increased significantly. Up-regulation of the HO-1 gene was paralleled by increased HO protein expression and activity. Despite this cellular response, apoptosis increased significantly following H/R injury indicating that the endogenous anti-oxidant defenses were unable to protect the cells. In contrast, addition of a phenolic anti-oxidant, bisphenol (BP), prior to H/R injury, inhibited ROS production and gene regulation and significantly decreased neuronal cell apoptosis. Added BP was converted stoichiometrically to the corresponding diphenoquinone indicating the synthetic anti-oxidant effectively decreased oxidative stress through a radical scavenging mechanism. Together, these data indicate that BP has the potential to act as a neuro-protective drug.
KW - apoptosis
KW - gene regulation
KW - hypoxia-reoxygenation
KW - oxidative stress
KW - stroke
UR - http://www.scopus.com/inward/record.url?scp=33644944350&partnerID=8YFLogxK
U2 - 10.1111/j.1471-4159.2006.03726.x
DO - 10.1111/j.1471-4159.2006.03726.x
M3 - Article
C2 - 16524376
AN - SCOPUS:33644944350
SN - 0022-3042
VL - 97
SP - 211
EP - 221
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 1
ER -