Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points

Arthe Raajendiran, Christoph Krisp, David P. De Souza, Geraldine Ooi, Paul R. Burton, Renea A. Taylor, Mark P. Molloy, Matthew J. Watt*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Adipose tissue is a primary regulator of energy balance and metabolism. The distribution of adipose tissue depots is of clinical interest because the accumulation of upper-body subcutaneous (ASAT) and visceral adipose tissue (VAT) is associated with cardiometabolic diseases, whereas lower-body glutealfemoral adipose tissue (GFAT) appears to be protective. There is heterogeneity in morphology and metabolism of adipocytes obtained from different regions of the body, but detailed knowledge of the constituent proteins in each depot is lacking. Here, we determined the human adipocyte proteome from ASAT, VAT, and GFAT using high-resolution Sequential Window Acquisition of all Theoretical (SWATH) mass spectrometry proteomics. We quantified 4,220 proteins in adipocytes, and 2,329 proteins were expressed in all three adipose depots. Comparative analysis revealed significant differences between adipocytes from different regions (6% and 8% when comparing VAT vs. ASAT and GFAT, 3% when comparing the subcutaneous adipose tissue depots, ASAT and GFAT), with marked differences in proteins that regulate metabolic functions. The VAT adipocyte proteome was overrepresented with proteins of glycolysis, lipogenesis, oxidative stress, and mitochondrial dysfunction. The GFAT adipocyte proteome predicted the activation of peroxisome proliferator-activated receptor α (PPARα), fatty acid, and branched-chain amino acid (BCAA) oxidation, enhanced tricarboxylic acid (TCA) cycle flux, and oxidative phosphorylation, which was supported by metabolomic data obtained from adipocytes. Together, this proteomic analysis provides an important resource and novel insights that enhance the understanding of metabolic heterogeneity in the regional adipocytes of humans.

Original languageEnglish
Pages (from-to)E1068-E1084
Number of pages17
JournalAmerican journal of physiology - endocrinology and metabolism
Volume320
Issue number6
DOIs
Publication statusPublished - Jun 2021

Keywords

  • Adipocyte
  • Adipocyte metabolism
  • Lipid metabolism
  • Obesity
  • Proteomics

Fingerprint

Dive into the research topics of 'Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points'. Together they form a unique fingerprint.

Cite this