Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix

Tian Zhang*, Brian Simonds, Keita Nomoto, Binesh Puthen Veettil, Ziyun Lin, Ivan Perez Wurfl, Gavin Conibeer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

We demonstrate that a pulsed KrF excimer laser (λ = 248 nm, τ = 22 ns) can be used as a post-furnace annealing method to greatly increase the electrically active doping concentration in nanocrystal silicon (ncSi) embedded in SiO2. The application of a single laser pulse of 202 mJ/cm2 improves the electrically active doping concentration by more than one order of magnitude while also improving the conductivity. It is confirmed that there is no film ablation or significant change in ncSi structure by atomic force microscopy and micro-Raman spectroscopy. We propose that the increase in free-carrier concentration is the result of interstitial P/B dopant activation, which are initially inside the Si crystallites. Evidence of mobility limited carrier transport and degenerate doping in the ncSi are measured with temperature-dependent conductivity.

Original languageEnglish
Article number083103
Pages (from-to)1-5
Number of pages5
JournalApplied Physics Letters
Volume108
Issue number8
Early online date22 Feb 2016
DOIs
Publication statusPublished - 22 Feb 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Pulsed KrF excimer laser dopant activation in nanocrystal silicon in a silicon dioxide matrix'. Together they form a unique fingerprint.

Cite this