Quantifying and understanding reproductive allocation schedules in plants

Elizabeth Hedi Wenk*, Daniel S. Falster

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    76 Citations (Scopus)
    45 Downloads (Pure)


    A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer-lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles.

    Original languageEnglish
    Pages (from-to)5521-5538
    Number of pages18
    JournalEcology and Evolution
    Issue number23
    Publication statusPublished - 1 Dec 2015

    Bibliographical note

    Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


    Dive into the research topics of 'Quantifying and understanding reproductive allocation schedules in plants'. Together they form a unique fingerprint.

    Cite this