Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to z=2.25

G. A. Rees, L. R. Spitler, R. P. Norris, M. J. Cowley, C. Papovich, K. Glazebrook, R. F. Quadri, C. M S Straatman, R. Allen, G. G. Kacprzak, I. Labbe, T. Nanayakkara, A. R. Tomczak, K. V. Tran

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

In order to reproduce the high-mass end of the galaxy mass distribution, some process must be responsible for the suppression of star formation in the most massive of galaxies. Commonly active galactic nuclei (AGN) are invoked to fulfil this role, but the exact means by which they do so is still the topic of much debate, with studies finding evidence for both the suppression and enhancement of star formation in AGN hosts. Using the ZFOURGE (FourStar Galaxy Evolution) andNMBS(Newfirm Medium Band Survey) galaxy surveys, we investigate the host galaxy properties of a mass-limited (M ≥ 1010.5M⊙), high-luminosity (L1.4 > 1024WHz-1) sample of radio-loud AGN to a redshift of z = 2.25. In contrast to low-redshift studies, which associate radio-AGN activity with quiescent hosts, we find that the majority of z > 1.5 radio-AGN are hosted by star-forming galaxies. Indeed, the stellar populations of radio-AGN are found to evolve with redshift in a manner that is consistent with the non-AGN mass-similar galaxy population. Interestingly, we find that the radio-AGN fraction is constant across a redshift range of 0.25 ≤ z < 2.25, perhaps indicating that the radio-AGN duty cycle has little dependence on redshift or galaxy type. We do however see a strong relation between the radio-AGN fraction and stellar mass, with radio-AGN becoming rare below ~1010.5M⊙ or a halo mass of 1012M⊙. This halo-mass threshold is in good agreement with simulations that initiate radio-AGN feedback at this mass limit. Despite this, we find that radio-AGN host star formation rates are consistent with the non-AGN mass-similar galaxy sample, suggesting that while radio-AGN are in the right place to suppress star formation in massive galaxies they are not necessarily responsible for doing so.

Original languageEnglish
Pages (from-to)2731-2744
Number of pages14
JournalMonthly Notices of the Royal Astronomical Society
Volume455
Issue number3
DOIs
Publication statusPublished - 21 Jan 2016

Keywords

  • Galaxies: active
  • Galaxies: evolution
  • Galaxies: high-redshift
  • Galaxies: stellar content
  • Infrared: galaxies
  • Radio continuum: galaxies

Fingerprint Dive into the research topics of 'Radio galaxies in ZFOURGE/NMBS: no difference in the properties of massive galaxies with and without radio-AGN out to z=2.25'. Together they form a unique fingerprint.

Cite this