Radiosurgery inhibition of the Notch signaling pathway in a rat model of arteriovenous malformations: Laboratory investigation

Jian Tu*, Yang Li, Zhiqiang Hu, Zhongbin Chen

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    Object. Notch signaling has been suggested to promote the development and maintenance of arteriovenous malformations (AVMs), but whether radiosurgery inhibits Notch signaling pathways in AVMs is unknown. The aim of this study was to examine molecular changes of Notch signaling pathways following radiosurgery and to explore mechanisms of radiosurgical obliteration of "nidus" vessels in a rat model of AVMs. Methods. One hundred eleven rats received common carotid artery-to-external jugular vein anastomosis to form an arteriovenous fistula (AVF) model. Six weeks postoperatively, dilated small vessels and capillaries formed a nidus. The rats with AVFs received 25-Gy radiosurgery. The expression of Notch1 and Notch4 receptors and their ligands, Delta-like1 and Delta-like4, Jagged1, Notch downstream gene target HES1, and an apoptotic marker caspase-3 in nidus vessels in the AVF rats was examined immunohistochemically and was quantified using LAS-AF software at 7 time points over a period of 42 days postradiosurgery. The interaction events between Notch1 receptor and Jagged1, as well as Notch4 receptor and Jagged1, were quantified in nidus vessels in the AVF rats using proximity ligation assay at different time points over 42 days postradiosurgery. Results. The expression of Notch1 and Notch4 receptors, Delta-like1, Delta-like4, Jagged1, and HES1 was observed in nidus vessels in the AVF rats pre- and postradiosurgery. Radiosurgery enhanced apoptotic activity (p < 0.05) and inhibited the expression of Notch1 and Notch4 receptors and Jagged1 in the endothelial cells of nidus vessels in the AVF rats at 1, 2, 3, 7, 21, 28, and 42 days postradiosurgery (p < 0.05). Radiosurgery suppressed the interaction events between Notch1 receptor and Jagged1 (p < 0.001) as well as Notch4 receptor and Jagged1 (p < 0.001) in the endothelial cells of nidus vessels in the AVF rats over a period of 42 days postradiosurgery. Radiosurgery induced thrombotic occlusion of nidus vessels in the AVF rats. There was a positive correlation between the percentage of fully obliterated nidus vessels and time after radiosurgery (r = 0.9324, p < 0.001). Conclusions. Radiosurgery inhibits endothelial Notch1 and Notch4 signaling pathways in nidus vessels while inducing thrombotic occlusion of nidus vessels in a rat model of AVMs. The underlying mechanisms of radiosurgeryinduced AVM shrinkage could be a combination of suppressing Notch receptor signaling in blood vessel endothelial cells, leading to a reduction in nidus vessel size and thrombotic occlusion of nidus vessels.

    Original languageEnglish
    Pages (from-to)1385-1396
    Number of pages12
    JournalJournal of Neurosurgery
    Volume120
    Issue number6
    DOIs
    Publication statusPublished - Jun 2014

    Keywords

    • Arteriovenous fistula
    • Arteriovenous malformation
    • Endothelial cell
    • Notch signaling pathway
    • Stereotactic radiosurgery
    • Vascular disorders

    Fingerprint

    Dive into the research topics of 'Radiosurgery inhibition of the Notch signaling pathway in a rat model of arteriovenous malformations: Laboratory investigation'. Together they form a unique fingerprint.

    Cite this