Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading

Melanie J. Bishop, Brendan P. Kelaher, Marcus P Lincoln Smith, Paul H. York, David J. Booth

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Classical resource- and the less studied ratio-dependent models of predator-prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.

LanguageEnglish
Pages701-708
Number of pages8
JournalOecologia
Volume149
Issue number4
DOIs
Publication statusPublished - Oct 2006
Externally publishedYes

Fingerprint

trophic level
nitrogen
resource
fish
invertebrate
phytoplankton
invertebrates
trophic levels
predator
ecological theory
fish feeding
prediction
community response
predator-prey relationships
sewage
macroinvertebrates
macroinvertebrate
estuaries
testing
estuary

Keywords

  • Bottom-up control
  • Nutrient enrichment
  • Predator-prey models
  • Ratio dependence
  • Resource dependence

Cite this

Bishop, Melanie J. ; Kelaher, Brendan P. ; Smith, Marcus P Lincoln ; York, Paul H. ; Booth, David J. / Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading. In: Oecologia. 2006 ; Vol. 149, No. 4. pp. 701-708.
@article{568088407426478ea8f37ced4dd55bb4,
title = "Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading",
abstract = "Classical resource- and the less studied ratio-dependent models of predator-prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.",
keywords = "Bottom-up control, Nutrient enrichment, Predator-prey models, Ratio dependence, Resource dependence",
author = "Bishop, {Melanie J.} and Kelaher, {Brendan P.} and Smith, {Marcus P Lincoln} and York, {Paul H.} and Booth, {David J.}",
year = "2006",
month = "10",
doi = "10.1007/s00442-006-0481-5",
language = "English",
volume = "149",
pages = "701--708",
journal = "Oecologia",
issn = "0029-8549",
publisher = "Springer, Springer Nature",
number = "4",

}

Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading. / Bishop, Melanie J.; Kelaher, Brendan P.; Smith, Marcus P Lincoln; York, Paul H.; Booth, David J.

In: Oecologia, Vol. 149, No. 4, 10.2006, p. 701-708.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Ratio-dependent response of a temperate Australian estuarine system to sustained nitrogen loading

AU - Bishop, Melanie J.

AU - Kelaher, Brendan P.

AU - Smith, Marcus P Lincoln

AU - York, Paul H.

AU - Booth, David J.

PY - 2006/10

Y1 - 2006/10

N2 - Classical resource- and the less studied ratio-dependent models of predator-prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.

AB - Classical resource- and the less studied ratio-dependent models of predator-prey relationships provide divergent predictions as to the sustained ecological effects of bottom-up forcing. While resource-dependent models, which consider only instantaneous prey density in modelling predator responses, predict community responses that are dependent on the number of trophic levels in a system, ratio-dependent models, which consider the number of prey per consumer, predict proportional increase in each level irrespective of chain length. The two models are only subtly different for systems with two or three trophic levels but in the case of four trophic levels, predict opposite effects of enrichment on primary producers. Despite the poor discriminatory power of tests of the models in systems with two or three trophic levels, field tests in estuarine and marine systems with four trophic levels have been notably absent. Sampling of phytoplankton, macroinvertebrates, invertebrate-feeding fishes, piscivorous fishes in Kooloonbung Creek, Hastings River estuary, eastern Australia, subject to over 20 years of sewage discharge, revealed increased abundances in all four trophic levels at the disturbed location relative to control sites. Increased abundance of phytoplankton at the disturbed site was counter to the predictions of resource-dependent models, which posit a reduction in the first trophic level in response to enrichment. By contrast, the increase in abundance of this first trophic level and the proportionality of increases in abundances of each of the four trophic groups to nitrogen loading provided strong support for ratio dependency. This first evidence of ratio dependence in an estuarine system with four trophic levels not only demonstrates the applicability of ecological theory which seeks to simplify the complexity of systems, but has implications for management. Although large nutrient inputs frequently induce mortality of invertebrates and fish, we have shown that smaller inputs may in fact enhance biomass of all trophic levels.

KW - Bottom-up control

KW - Nutrient enrichment

KW - Predator-prey models

KW - Ratio dependence

KW - Resource dependence

UR - http://www.scopus.com/inward/record.url?scp=33748922626&partnerID=8YFLogxK

U2 - 10.1007/s00442-006-0481-5

DO - 10.1007/s00442-006-0481-5

M3 - Article

VL - 149

SP - 701

EP - 708

JO - Oecologia

T2 - Oecologia

JF - Oecologia

SN - 0029-8549

IS - 4

ER -