Re-Os and S isotope evidence for the origin of Platreef mineralization (Bushveld Complex)

M. Yudovskaya*, E. Belousova, J. Kinnaird, E. Dubinina, D. F. Grobler, N. Pearson

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


The Bushveld Complex contains the largest platinum-group element (PGE) deposits of the world that are represented by persistent stratiform reefs highly enriched with PGE with respect to underlying and overlying rocks. New Re-Os isotope and elemental LA MC-ICPMS data on platinum-group minerals (PGM) from the mineralized reefs are presented with implications to correlation between the different segments of the Bushveld Complex and a role of superimposed processes at the reef formation. We analyzed laurite (RuS2), hollingworthite (RhAsS), sperrylite (PtAs2) and Pt-Fe alloys from the Merensky Reef, Pseudoreef and the PGE reef of the Platreef. The measured 187Os/188Os value for Platreef laurite is 0.1751 ± 0.0004 whereas the ratios for sperrylite and hollingworthite range to slightly higher values (0.1713–0.1818 and 0.1744–0.1835 respectively). The observed textures of the analyzed PGM, such as Pt-Fe symplectites in base metal sulfides (BMS), laurite inclusions in chromite and sperrylite rims around sulfide-silicate aggregates, are interpreted as features of primary magmatic crystallization whereas hollingworthite overgrowths and exsolutions in sperrylite are likely to have originated from later solid state transformation or metasomatic processes.

The Platreef is a composite sill-like body in the northern limb correlative to the Critical Zone in terms of stratigraphic position, whole-rock geochemistry and isotope characteristics. The pristine magmatic character of sulfides and PGM in the stratiform reefs at the top of the Platreef strongly resembles the style of Merensky Reef mineralization. However, the basal part of the Platreef pyroxenitic sequence is variably contaminated and mineralized with a significant hydrothermal overprint. Sulfides from underlying Lower Zone peridotite yield δ34S values varying from +9‰ to +14.2‰ that are much higher than the values for the overlying Platreef and are a consequence of sulfur assimilation from sedimentary sulfates. The same homogeneous mantle-like S isotope compositions in the high-grade PGE reef of the Platreef and the Merensky Reef can be explained by enhanced S isotope exchange through the orthomagmatic process of sulfide upgrading. The similar values and the limited variations of the initial Os isotopic ratios of all PGMs in both reefs also support their magmatic crystallization and origin from a common source.

Original languageEnglish
Pages (from-to)282-307
Number of pages26
JournalGeochimica et Cosmochimica Acta
Publication statusPublished - 2017


  • Re-Os isotopes
  • Bushveld Complex
  • Platreef
  • S isotopes
  • Platinum-group minerals


Dive into the research topics of 'Re-Os and S isotope evidence for the origin of Platreef mineralization (Bushveld Complex)'. Together they form a unique fingerprint.

Cite this