TY - JOUR
ID - 35729
TI - Primitive Ideal Space of Ultragraph $C^*$-algebras
JO - Sahand Communications in Mathematical Analysis
JA - SCMA
LA - en
SN - 2322-5807
AU - Imanfar, Mostafa
AU - Pourabbas, Abdolrasoul
AU - Larki, Hossein
AD - Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, 15914 Tehran, Iran.
AD - Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Iran.
Y1 - 2019
PY - 2019
VL - 15
IS - 1
SP - 147
EP - 158
KW - Ultragraph
KW - Ultragraph $C^*$-algebra
KW - Primitive ideal
DO - 10.22130/scma.2018.82725.404
N2 - In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the Hong and Szyma$ acute{ mathrm { n } } $ski's description of the primitive ideal space of a graph $ C ^ * $-algebra by a simpler method.
UR - https://scma.maragheh.ac.ir/article_35729.html
L1 - https://scma.maragheh.ac.ir/article_35729_73ba5420990970a0ddcac2ce5d817221.pdf
ER -