TY - JOUR
T1 - Reduced primacy bias in autism during early sensory processing
AU - Goris, Judith
AU - Braem, Senne
AU - Van Herck, Shauni
AU - Simoens, Jonas
AU - Deschrijver, Eliane
AU - Wiersema, Jan R.
AU - Paton, Bryan
AU - Brass, Marcel
AU - Todd, Juanita
PY - 2022/5/11
Y1 - 2022/5/11
N2 - Recent theories of autism propose that a core deficit in autism would be a less context-sensitive weighting of prediction errors. There is also first support for this hypothesis on an early sensory level. However, an open question is whether this decreased context sensitivity is caused by faster updating of one's model of the world (i.e., higher weighting of new information), proposed by predictive coding theories, or slower model updating. Here, we differentiated between these two hypotheses by investigating how first impressions shape the mismatch negativity (MMN), reflecting early sensory prediction error processing. An autism and matched control group of human adults (both
n = 27, 8 female) were compared on the multi-timescale MMN paradigm, in which tones were presented that were either standard (frequently occurring) or deviant (rare), and these roles reversed every block. A well-replicated observation is that the initial model (i.e., the standard and deviant sound in the first block) influences MMN amplitudes in later blocks. If autism is characterized by faster model updating, and thus a smaller primacy bias, we hypothesized (and demonstrate using a simple reinforcement learning model) that their MMN amplitudes should be less influenced by the initial context. In line with this hypothesis, we found that MMN responses in the autism group did not differ between the initial deviant and initial standard sounds as they did in the control group. These findings are consistent with the idea that autism is characterized by faster model updating during early sensory processing, as proposed by predictive coding accounts of autism.
SIGNIFICANCE STATEMENT Recent theories of autism propose that a core deficit in autism is that they are faster to update their models of the world based on new sensory information. Here, we tested this hypothesis by investigating how first impressions shape brain responses during early sensory processing, and hypothesized that individuals with autism would be less influenced by these first impressions. In line with earlier studies, our results show that early sensory processing was influenced by first impressions in a control group. However, this was not the case in an autism group. This suggests that individuals with autism are faster to abandon their initial model, and is consistent with the proposal that they are faster to update their models of the world.
AB - Recent theories of autism propose that a core deficit in autism would be a less context-sensitive weighting of prediction errors. There is also first support for this hypothesis on an early sensory level. However, an open question is whether this decreased context sensitivity is caused by faster updating of one's model of the world (i.e., higher weighting of new information), proposed by predictive coding theories, or slower model updating. Here, we differentiated between these two hypotheses by investigating how first impressions shape the mismatch negativity (MMN), reflecting early sensory prediction error processing. An autism and matched control group of human adults (both
n = 27, 8 female) were compared on the multi-timescale MMN paradigm, in which tones were presented that were either standard (frequently occurring) or deviant (rare), and these roles reversed every block. A well-replicated observation is that the initial model (i.e., the standard and deviant sound in the first block) influences MMN amplitudes in later blocks. If autism is characterized by faster model updating, and thus a smaller primacy bias, we hypothesized (and demonstrate using a simple reinforcement learning model) that their MMN amplitudes should be less influenced by the initial context. In line with this hypothesis, we found that MMN responses in the autism group did not differ between the initial deviant and initial standard sounds as they did in the control group. These findings are consistent with the idea that autism is characterized by faster model updating during early sensory processing, as proposed by predictive coding accounts of autism.
SIGNIFICANCE STATEMENT Recent theories of autism propose that a core deficit in autism is that they are faster to update their models of the world based on new sensory information. Here, we tested this hypothesis by investigating how first impressions shape brain responses during early sensory processing, and hypothesized that individuals with autism would be less influenced by these first impressions. In line with earlier studies, our results show that early sensory processing was influenced by first impressions in a control group. However, this was not the case in an autism group. This suggests that individuals with autism are faster to abandon their initial model, and is consistent with the proposal that they are faster to update their models of the world.
KW - autism spectrum disorder
KW - autism EEG
KW - mismatch negativity
KW - prediction error
KW - predictive coding
UR - http://www.scopus.com/inward/record.url?scp=85130002694&partnerID=8YFLogxK
U2 - 10.1523/JNEUROSCI.3088-20.2022
DO - 10.1523/JNEUROSCI.3088-20.2022
M3 - Article
C2 - 35361705
SN - 0270-6474
VL - 42
SP - 3989
EP - 3999
JO - The Journal of Neuroscience
JF - The Journal of Neuroscience
IS - 19
ER -