Refined node type graph convolutional network for recommendation

Wei He, Guohao Sun, Jinhu Lu, Xiu Fang*, Guanfeng Liu, Jian Yang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

Abstract

Recently, because of the remarkable performance in alleviating the data sparseness problem in recommender systems, Graph Convolutional (Neural) Networks (GCNs) have drawn wide attention as an effective recommendation approach. By modeling the user-item interaction graph, GCN iteratively aggregates neighboring nodes into embeddings of different depths according to the importance of each node. However, the existing GCN-based methods face the common issues that, they do not consider the node information and graph structure during aggregating nodes, such that they cannot assign reasonable weights to the neighboring nodes. Additionally, they ignore the differences in node types in the user-item interaction graph and thus, cannot explore the complex relationship between users and items, resulting in a suboptimal result. To solve these problems, a novel GCN-based framework called RNT-GCN is proposed in this paper. RNT-GCN integrates the structure of the graph and node information to assign reasonable importance to different nodes. In addition, RNT-GCN refines the node types, such that the heterogeneous properties of the user-item interaction graph can be better preserved, and the collaborative information of users and items can be effectively extracted. Extensive experiments prove the RNT-GCN achieved significant performance compared to SOTA methods.

Original languageEnglish
Title of host publicationAdvanced Data Mining and Applications
Subtitle of host publication19th International Conference, ADMA 2023, Shenyang, China, August 21–23, 2023, proceedings, part I
EditorsXiaochun Yang, Heru Suhartanto, Guoren Wang, Bin Wang, Jing Jiang, Bing Li, Huaijie Zhu, Ningning Cui
Place of PublicationCham
PublisherSpringer, Springer Nature
Pages91-106
Number of pages16
ISBN (Electronic)9783031466618
ISBN (Print)9783031466601
DOIs
Publication statusPublished - 2023
Event19th International Conference on Advanced Data Mining and Applications, ADMA 2023 - Shenyang, China
Duration: 21 Aug 202323 Aug 2023

Publication series

NameLecture Notes in Computer Science
PublisherSpringer
Volume14176
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th International Conference on Advanced Data Mining and Applications, ADMA 2023
Country/TerritoryChina
CityShenyang
Period21/08/2323/08/23

Keywords

  • Recommender system
  • Graph convolutional network
  • User-item interaction graph

Fingerprint

Dive into the research topics of 'Refined node type graph convolutional network for recommendation'. Together they form a unique fingerprint.

Cite this