Relationship between isoprene emission and photosynthesis in diatoms, and its implications for global marine isoprene estimates

K. G. Srikanta Dani*, Ana M. Silva Benavides, Marco Michelozzi, Gianfranco Peluso, Giuseppe Torzillo, Francesco Loreto

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    36 Citations (Scopus)

    Abstract

    Global consensus estimates of marine isoprene emission (~ 1 TgC yr− 1) is significantly smaller than terrestrial isoprene emission (~ 500 TgC yr− 1), and the reasons are unclear. With the premise that isoprene emission is metabolically linked to photosynthesis in phytoplankton as in plants, we measured isoprene emission and photosynthesis to changing light levels in high-density cultures of two diatom species, Phaeodactylum tricornutum and Chaetoceros calcitrans. Isoprene emission increased and did not saturate with increasing light levels in C. calcitrans under laboratory conditions, whereas isoprene emission of P. tricornutum decreased at high-light levels with an associated increase in non-photochemical quenching. When tested for CO2 response, emission from P. tricornutum increased under low CO2 (similar to higher plants) but did not cease in absence of dissolved CO2, plausibly due to CO2 concentrating mechanisms. Isoprene emission under full-sun light in outdoor cultures of C. calcitrans (500 ± 200 fmol μg Chl− 1 h− 1) was significantly greater than maximum emission in laboratory cultures (100 ± 30 fmol μg Chl− 1 h− 1). We show that photosynthetic capacity of diatoms can be equal to or greater than that of higher plants. However, the carbon cost of isoprene emission in diatoms (≤ 0.0005% of photosynthesis) is significantly smaller than that in plants (0.9%). Based on these findings, we calculate that isoprene emission from diatoms alone can contribute ~ 4.8 TgC yr− 1 to the atmosphere, which is much greater than current modelled projections for annual isoprene emission from the entire marine ecosystem.

    Original languageEnglish
    Pages (from-to)17-24
    Number of pages8
    JournalMarine Chemistry
    Volume189
    DOIs
    Publication statusPublished - 20 Feb 2017

    Keywords

    • chlorophylls
    • diatoms
    • isoprene emission
    • light response
    • non-photochemical quenching
    • photosynthesis
    • phytoplankton

    Fingerprint

    Dive into the research topics of 'Relationship between isoprene emission and photosynthesis in diatoms, and its implications for global marine isoprene estimates'. Together they form a unique fingerprint.

    Cite this