TY - JOUR
T1 - Remarkable effect of jacalin in diminishing the protein corona interference in the antibacterial activity of pectin-capped copper sulfide nanoparticles
AU - Vijayakumar, Santhosh
AU - Subramaniyan, Siva Bala
AU - Megarajan, Sengan
AU - Kamlekar, Ravi Kanth
AU - Veerappan, Anbazhagan
N1 - Copyright the Publisher 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2019/8/27
Y1 - 2019/8/27
N2 - Herein, we report a new strategy based on jacalin functionalization to diminish the impact of biological fluids in the antibacterial applications of nanoparticles (NPs). Precoating pectin-capped copper sulfide NPs (pCuS) with bovine serum albumin produced a protein corona, which affects the antibacterial activity of pCuS. It was found that the minimum inhibitory concentration (MIC) increases fourfold because of the formation of the protein corona. Interestingly, the pCuS functionalized with jacalin enhance the targeting capabilities through bacterial cell surface glycan recognition with no interference from the protein corona. The MIC of pCuS decreases 16-fold on functionalization with jacalin. Mechanistic studies indicated that the pCuS functionalized with jacalin impede the protein corona interference and induce bacterial cell death by impairing the GSH/reactive oxygen species balance and disrupting the bacteria cell membrane. As a proof of concept, we used a bacteria-infected zebrafish animal model to demonstrate the interference of biological fluids in the antibacterial activity of NPs. Infected zebrafish treated with 1× MIC of pCuS failed to recover from the infection, but 4× MIC rescues the fish. The requirement of a high dose of NPs to treat the infection confirms the interference of biological fluids in nanotherapeutic applications. At the same time, the jacalin–pCuS complex rescues the infected fish at 16-fold lesser MIC. The results obtained from this study suggest that jacalin-mediated NP targeting may have broad implications in the development of future nanomedicine.
AB - Herein, we report a new strategy based on jacalin functionalization to diminish the impact of biological fluids in the antibacterial applications of nanoparticles (NPs). Precoating pectin-capped copper sulfide NPs (pCuS) with bovine serum albumin produced a protein corona, which affects the antibacterial activity of pCuS. It was found that the minimum inhibitory concentration (MIC) increases fourfold because of the formation of the protein corona. Interestingly, the pCuS functionalized with jacalin enhance the targeting capabilities through bacterial cell surface glycan recognition with no interference from the protein corona. The MIC of pCuS decreases 16-fold on functionalization with jacalin. Mechanistic studies indicated that the pCuS functionalized with jacalin impede the protein corona interference and induce bacterial cell death by impairing the GSH/reactive oxygen species balance and disrupting the bacteria cell membrane. As a proof of concept, we used a bacteria-infected zebrafish animal model to demonstrate the interference of biological fluids in the antibacterial activity of NPs. Infected zebrafish treated with 1× MIC of pCuS failed to recover from the infection, but 4× MIC rescues the fish. The requirement of a high dose of NPs to treat the infection confirms the interference of biological fluids in nanotherapeutic applications. At the same time, the jacalin–pCuS complex rescues the infected fish at 16-fold lesser MIC. The results obtained from this study suggest that jacalin-mediated NP targeting may have broad implications in the development of future nanomedicine.
U2 - 10.1021/acsomega.9b01886
DO - 10.1021/acsomega.9b01886
M3 - Article
C2 - 31497723
SN - 2470-1343
VL - 4
SP - 14049
EP - 14056
JO - ACS Omega
JF - ACS Omega
IS - 9
ER -