TY - JOUR
T1 - Reply to comment by Jennings et al. on "Investigating Earth's formation history through copper and sulfur metal-silicate partitioning during core-mantle differentiation"
AU - Mahan, B.
AU - Siebert, J.
AU - Badro, J.
AU - Borensztajn, S.
AU - Moynier, F.
PY - 2019/12
Y1 - 2019/12
N2 - Recognizing existing materials that can act as proxies for Earth's building blocks, and understanding the accretionary pathway taken during Earth's growth, persist as outstanding issues in need of resolution. In Mahan, Siebert, Blanchard, Badro, et al. (2018, https://doi.org/10.1029/2018JB015991), we conducted diamond anvil cell (DAC) Cu metal-silicate partitioning experiments and coupled these results with a large complement of literature data to characterize Cu metal-silicate partitioning during Earth's core formation and accretion history. The Comment of Jennings, Wade, and Llovet (2019, https://doi.org/10.1029/2018JB016930) contends that secondary X-ray fluorescence, originating from the Cu holders that experiments are routinely welded to (“lift-out” grids), compromises the novel Cu partitioning data of Mahan, Siebert, Blanchard, Badro, et al. (2018) beyond utility. To dispel these concerns and further validate our data, we have (i) investigated secondary X-ray fluorescence effects in a Cu-free experiment and provided a matrix-matched data correction, and (ii) rewelded a DAC experiment from a Cu grid to a Mo grid for a comparison of compositional analyses and Cu partitioning results. Secondary fluorescence results, in fact much like the simulated results in Jennings, Wade, and Llovet (2019), indicate that this effect is essentially equal in the metal and silicate phases and therefore has no actual impact on Cu metal-silicate partition coefficients. Moreover, Cu concentrations and partition coefficients determined using the Mo grid are statistically indistinguishable from that determined using the Cu grid. All results decisively illustrate that while secondary X-ray fluorescence must be considered where absolute concentrations are the final objective, it has had no meaningful impact on the partitioning data and observations of Mahan, Siebert, Blanchard, Badro, et al. (2018).
AB - Recognizing existing materials that can act as proxies for Earth's building blocks, and understanding the accretionary pathway taken during Earth's growth, persist as outstanding issues in need of resolution. In Mahan, Siebert, Blanchard, Badro, et al. (2018, https://doi.org/10.1029/2018JB015991), we conducted diamond anvil cell (DAC) Cu metal-silicate partitioning experiments and coupled these results with a large complement of literature data to characterize Cu metal-silicate partitioning during Earth's core formation and accretion history. The Comment of Jennings, Wade, and Llovet (2019, https://doi.org/10.1029/2018JB016930) contends that secondary X-ray fluorescence, originating from the Cu holders that experiments are routinely welded to (“lift-out” grids), compromises the novel Cu partitioning data of Mahan, Siebert, Blanchard, Badro, et al. (2018) beyond utility. To dispel these concerns and further validate our data, we have (i) investigated secondary X-ray fluorescence effects in a Cu-free experiment and provided a matrix-matched data correction, and (ii) rewelded a DAC experiment from a Cu grid to a Mo grid for a comparison of compositional analyses and Cu partitioning results. Secondary fluorescence results, in fact much like the simulated results in Jennings, Wade, and Llovet (2019), indicate that this effect is essentially equal in the metal and silicate phases and therefore has no actual impact on Cu metal-silicate partition coefficients. Moreover, Cu concentrations and partition coefficients determined using the Mo grid are statistically indistinguishable from that determined using the Cu grid. All results decisively illustrate that while secondary X-ray fluorescence must be considered where absolute concentrations are the final objective, it has had no meaningful impact on the partitioning data and observations of Mahan, Siebert, Blanchard, Badro, et al. (2018).
UR - http://www.scopus.com/inward/record.url?scp=85076548751&partnerID=8YFLogxK
U2 - 10.1029/2019JB017599
DO - 10.1029/2019JB017599
M3 - Letter
AN - SCOPUS:85076548751
SN - 2169-9356
VL - 124
SP - 12845
EP - 12853
JO - Journal of Geophysical Research: Solid Earth
JF - Journal of Geophysical Research: Solid Earth
IS - 12
ER -