Reproducible k-means clustering in galaxy feature data from the GAMA survey

Sebastian Turner*, Lee S. Kelvin, Ivan K. Baldry, Paulo J. Lisboa, Steven N. Longmore, Chris A. Collins, Benne W. Holwerda, Andrew M. Hopkins, Jochen Liske

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
19 Downloads (Pure)


A fundamental bimodality of galaxies in the local Universe is apparent in many of the features used to describe them.Multiple sub-populations existwithin this framework, each representing galaxies following distinct evolutionary pathways. Accurately identifying and characterizing these sub-populations requires that a large number of galaxy features be analysed simultaneously. Future galaxy surveys such as LSST and Euclid will yield data volumes for which traditional approaches to galaxy classification will become unfeasible. To address this, we apply a robust k-means unsupervized clustering method to feature data derived from a sample of 7338 local-Universe galaxies selected from the Galaxy And Mass Assembly (GAMA) survey. This allows us to partition our sample into k clusters without the need for training on pre-labelled data, facilitating a full census of our high-dimensionality feature space and guarding against stochastic effects.We find that the local galaxy population natively splits into 2, 3, 5, and a maximum of six sub-populations, with each corresponding to a distinct ongoing evolutionary mechanism. Notably, the impact of the local environment appears strongly linked with the evolution of low-mass (M* < 1010 M) galaxies, with more massive systems appearing to evolve more passively from the blue cloud on to the red sequence.With a typical run time of ~3 min per value of k for our galaxy sample, we show how k-means unsupervized clustering is an ideal tool for future analysis of large extragalactic data sets, being scalable, adaptable, and providing crucial insight into the fundamental properties of the local galaxy population.

Original languageEnglish
Pages (from-to)126-150
Number of pages25
JournalMonthly Notices of the Royal Astronomical Society
Issue number1
Publication statusPublished - 1 Jan 2019
Externally publishedYes

Bibliographical note

This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society, Volume 482, Issue 1, January 2019, Pages 126–150, Copyright 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.


  • Galaxies: evolution
  • Galaxies: general
  • Galaxies: statistics
  • Methods: statistical


Dive into the research topics of 'Reproducible k-means clustering in galaxy feature data from the GAMA survey'. Together they form a unique fingerprint.

Cite this