Residual stress distribution in a lamellar model of the arterial wall

Nooshin Haghighipour, Mohammad Tafazzoli-Shadpour*, Albert Avolio

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    6 Citations (Scopus)

    Abstract

    Excessive wall circumferential stress in arteries caused by luminal pressure leads to endothelial damage and clinical consequences. In addition to circumferential stress, arterial wall contains residual stress with compressive and tensile components on intima and adventitia sides. The intimal compressive component compensates part of tensile stress induced by blood pressure, hence reduces severity of endothelial tension. The opening angle caused by radial cut of arterial ring defines residual stress. In this study, finite element modelling is used to evaluate residual stress in a lamellar model of human aorta with differing opening angle and elastic modulus. Results show non-linear residual stress profiles across wall thickness, influenced by structural and mechanical parameters. Elevation of opening angle from 50° to 90° leads to increase of intimal compressive component compensating up to 32.6% of the pressure-induced tensile stress. Results may be applied in study of endothelial injury caused by excessive stress in situations such as aging, hypertension and atherosclerosis.
    Original languageEnglish
    Pages (from-to)422-428
    Number of pages7
    JournalJournal of Medical Engineering and Technology
    Volume34
    Issue number7-8
    DOIs
    Publication statusPublished - 2010

    Keywords

    • Arterial wall
    • Finite element
    • Lamellar structure
    • Residual stress

    Fingerprint

    Dive into the research topics of 'Residual stress distribution in a lamellar model of the arterial wall'. Together they form a unique fingerprint.

    Cite this