Resolving the gap and au-scale asymmetries in the pre-transitional disk of v1247 orionis

Stefan Kraus*, Michael J. Ireland, Michael L. Sitko, John D. Monnier, Nuria Calvet, Catherine Espaillat, Carol A. Grady, Tim J. Harries, Sebastian F. Hönig, Ray W. Russell, Jeremy R. Swearingen, Chelsea Werren, David J. Wilner

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    43 Citations (Scopus)

    Abstract

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 μm), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii ≳ 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K′, and L′ bands, we detect asymmetries in the brightness distribution on scales of ∼15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.

    Original languageEnglish
    Article number80
    Pages (from-to)1-15
    Number of pages15
    JournalAstrophysical Journal
    Volume768
    Issue number1
    DOIs
    Publication statusPublished - 1 May 2013

    Bibliographical note

    Copyright 2013 the American Astronomical Society. First published in the Astrophysical journal, 768(1), 80, 2013, published by IOP Publishing. The original publication is available at http://www.doi.org/10.1088/0004-637X/768/1/80. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Fingerprint

    Dive into the research topics of 'Resolving the gap and au-scale asymmetries in the pre-transitional disk of v1247 orionis'. Together they form a unique fingerprint.

    Cite this