Abstract
Theory predicts that traits subject to strong sexual selection should evolve to be more exaggerated and developmentally integrated than nonsexual traits, thus leading to heightened condition dependence. Until recently, however, efforts to evaluate this prediction have suffered from either a purely correlational (nonmanipulative) approach, or from using manipulations of doubtful ecological relevance. Here I address these issues by integrating observation and manipulation to study condition- and sex-related color variation in a butterfly. The focal species, Eurema hecabe (Pieridae), possesses three sexually homologous and morphogenetically discrete dorsal wing color elements - coherently scattered ultraviolet (UV), pteridine yellow, and melaninic black. The UV is most strongly sexually selected, and is also the only color element with restricted distribution across female wings. Condition dependence and sexual dichromatism were pervasive, characterizing all color traits except the melanic black, and acting such that low condition males resembled high condition females. Although female coloration tended to exhibit greater phenotypic variation, size-scaled UV was more variable and condition dependent in males. Importantly, manipulation of larval resources was sufficient to closely reconstruct the extent and patterns of field-observed phenotypic variation in condition, and color trait expression, which implicates larval resource acquisition as a primary driver of condition dependence. These results support theories regarding phenotypic variation in sexually selected traits.
Original language | English |
---|---|
Pages (from-to) | 2346-2358 |
Number of pages | 13 |
Journal | Evolution |
Volume | 62 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 2008 |
Externally published | Yes |
Keywords
- Dichromatism
- Dimorphism
- Eurema
- Iridescence
- Ornamentation
- Sexual selection