Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae)

S. Dubey*, R. Shine

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

Many alpine species are under threat from global climate change, as their geographic ranges become increasingly fragmented and unsuitable. Understanding rates and determinants of gene flow among such fragmented populations, over historical as well as recent timescales, can help to identify populations under threat. It is also important to clarify the degree to which loss of local populations reduces overall genetic diversity within the taxon. The endangered Blue Mountains Water Skink (Eulamprus leuraensis) is restricted to <40 small swamps in montane south-eastern Australia. Our analyses of seven microsatellite loci of 241 animals from 13 populations show strong geographic structure, with major genetic divergence even between populations separated by <0.5 km. Dispersal between populations is scarce, and appears to involve mostly males. Our analyses suggest potential recent bottleneck events in all the identified populations, and lower genetic diversity and population size parameter at lower-elevation sites than at higher-elevation sites. Management of this endangered taxon thus needs to treat most populations separately, because of their genetic distinctiveness and low rates of genetic exchange.

Original languageEnglish
Pages (from-to)886-897
Number of pages12
JournalMolecular Ecology
Volume19
Issue number5
DOIs
Publication statusPublished - Mar 2010
Externally publishedYes

Keywords

  • altitudinal gradient
  • dispersal
  • microsatellites
  • reptiles
  • spatial structure

Fingerprint

Dive into the research topics of 'Restricted dispersal and genetic diversity in populations of an endangered montane lizard (Eulamprus leuraensis, Scincidae)'. Together they form a unique fingerprint.

Cite this