Rigorous analysis of extremely large spherical reflector antennas

EM case

E. D. Vinogradova, S. S. Vinogradov, Paul Smith

    Research output: Chapter in Book/Report/Conference proceedingConference proceeding contribution

    Abstract

    The transmitting spherical reflector antenna (SRA) has a well-known rigorous solution form as a second kind Fredholm system that is well conditioned when truncated to a finite system. The size of such systems for extremely large SRAs require specially designed highly efficient numerical algorithms to make their analysis feasible. Two significant features of the system are that its convolution format admits a computationally rapid implementation of the bi-conjugate gradient method, and at high frequencies, a certain decoupling occurs. These features allow an effective numerical treatment of apertures some thousands of wavelengths.

    Original languageEnglish
    Title of host publicationProgress in Industrial Mathematics at ECMI 2004
    Subtitle of host publicationMathematics in Industry (The European Consortium for Mathematics in Industry)
    EditorsA. Di Bucchianico, R. M. M. Mattheij, M. A. Peletier
    Place of PublicationBerlin; Heidelberg
    PublisherSpringer, Springer Nature
    Pages49-53
    Number of pages5
    Volume8
    ISBN (Electronic)9783540280736
    ISBN (Print)3540280723, 9783540280729
    DOIs
    Publication statusPublished - 2006
    Event13th European Symposium on Mathematics in Industry (ESMI) - Eindhoven, Netherlands
    Duration: 21 Jun 200425 Jun 2004

    Publication series

    NameMathematics in Industry
    PublisherSpringer Verlag
    Volume8
    ISSN (Print)1612-3956

    Conference

    Conference13th European Symposium on Mathematics in Industry (ESMI)
    CountryNetherlands
    CityEindhoven
    Period21/06/0425/06/04

    Keywords

    • spherical reflector antenna
    • electromagnetics
    • method of regularisation
    • iterative methods

    Cite this

    Vinogradova, E. D., Vinogradov, S. S., & Smith, P. (2006). Rigorous analysis of extremely large spherical reflector antennas: EM case. In A. Di Bucchianico, R. M. M. Mattheij, & M. A. Peletier (Eds.), Progress in Industrial Mathematics at ECMI 2004: Mathematics in Industry (The European Consortium for Mathematics in Industry) (Vol. 8, pp. 49-53). (Mathematics in Industry; Vol. 8). Berlin; Heidelberg: Springer, Springer Nature. https://doi.org/10.1007/3-540-28073-1_5