Abstract
The ventrolateral medulla has been postulated to contain chemosensitive neurons. This study investigated the role of this region in the generation of the pressor response to cerebral ischemia (CIR) in anesthetized paralyzed artificially ventilated rabbits. A circumscibed and highly sensitive pressor area in the ventrolateral medullary reticular formation 2-4 mm rostral to the obex, separate from the well-known dorsal pressor area, was mapped by use of a stimulating electrode. Electrolytic destruction of this area resulted in a profound reduction in resting mean arterial pressure (MAP). After restoration of baseline MAP with norepinephrine infusion, the CIR was greatly reduced (by mean 70.2% of control), but pressor responses from the dorsal medulla were unaffected. In contrast, lesions of greater size placed in the ventrolateral medulla more caudally did not significantly alter resting MAP and only slightly reduced the CIR (by mean 17.0% of control). Vasomotor responses to stimulation of the ventrolateral pressor area were unaffected by caudal ventrolateral lesions, but greatly reduced by dorsomedial lesions in the same plane. It is concluded that the ventrolateral area is either the site of origin or an essential part of the central vasomotor pathway mediating the CIR and that this pathway projects dorsomedially before descending to the spinal cord.
Original language | English |
---|---|
Pages (from-to) | H349-H358 |
Number of pages | 10 |
Journal | The American journal of physiology |
Volume | 239 |
Issue number | 3 |
Publication status | Published - 1980 |
Externally published | Yes |