Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments

Diana Gazzola, Steven C. Van Sluyter, Andrea Curioni, Elizabeth J. Waters, Matteo Marangon*

*Corresponding author for this work

Research output: Contribution to journalArticle

42 Citations (Scopus)

Abstract

Residual proteins in finished wines can aggregate to form haze. To obtain insights into the mechanism of protein haze formation, a reconstitution approach was used to study the heat-induced aggregation behavior of purified wine proteins. A chitinase, four thaumatin-like protein (TLP) isoforms, phenolics, and polysaccharides were isolated from a Chardonnay wine. The same wine was stripped of these compounds and used as a base to reconstitute each of the proteins alone or in combination with the isolated phenolics and/or polysaccharides. After a heating and cooling cycle (70 °C for 1 h and 25 °C for 15 h), the size and concentration of the aggregates formed were measured by scanning ion occlusion sensing (SIOS), a technique to detect and quantify nanoparticles. The chitinase was the protein most prone to aggregate and the one that formed the largest particles; phenolics and polysaccharides did not have a significant impact on its aggregation behavior. TLP isoforms varied in susceptibility to haze formation and in interactions with polysaccharides and phenolics. The work establishes SIOS as a useful method for studying wine haze.

Original languageEnglish
Pages (from-to)10666-10673
Number of pages8
JournalJournal of Agricultural and Food Chemistry
Volume60
Issue number42
DOIs
Publication statusPublished - 24 Oct 2012

Fingerprint Dive into the research topics of 'Roles of proteins, polysaccharides, and phenolics in haze formation in white wine via reconstitution experiments'. Together they form a unique fingerprint.

Cite this