Rolling out RapidPlan: what we've learnt

Kirsten van Gysen*, James O'Toole, Andrew Le, Kenny Wu, Thilo Schuler, Brian Porter, John Kipritidis, John Atyeo, Chris Brown, Thomas Eade

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
47 Downloads (Pure)

Abstract

Introduction: RapidPlan (RP), a knowledge-based planning system, aims to consistently improve plan quality and efficiency in radiotherapy. During the early stages of implementation, some of the challenges include knowing how to optimally train a model and how to integrate RP into a department. We discuss our experience with the implementation of RP into our institution. Methods: We reviewed all patients planned using RP over a 7-month period following inception in our department. Our primary outcome was clinically acceptable plans (used for treatment) with secondary outcomes including model performance and a comparison of efficiency and plan quality between RP and manual planning (MP). Results: Between November 2017 and May 2018, 496 patients were simulated, of which 217 (43.8%) had an available model. RP successfully created a clinically acceptable plan in 87.2% of eligible patients. The individual success of the 24 models ranged from 50% to 100%, with more than 90% success in 15 (62.5%) of the models. In 40% of plans, success was achieved on the 1st optimisation. The overall planning time with RP was reduced by up to 95% compared with MP times. The quality of the RP plans was at least equivalent to historical MP plans in terms of target coverage and organ at risk constraints. Conclusion: While initially time-consuming and resource-intensive to implement, plans optimised with RP demonstrate clinically acceptable plan quality, while significantly improving the efficiency of a department, suggesting RP and its application is a highly effective tool in clinical practice.

Original languageEnglish
Pages (from-to)310-317
Number of pages8
JournalJournal of Medical Radiation Sciences
Volume67
Issue number4
Early online date3 Sept 2020
DOIs
Publication statusPublished - 1 Dec 2020
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Knowledge-based planning
  • radiation therapy
  • RapidPlan

Fingerprint

Dive into the research topics of 'Rolling out RapidPlan: what we've learnt'. Together they form a unique fingerprint.

Cite this