Room-temperature dual fluorescence of a locked green fluorescent protein chromophore analogue

Soumit Chatterjee, Ketan Ahire, Peter Karuso

Research output: Contribution to journalArticle

Abstract

A structurally locked green fluorescent protein (GFP) chromophore with a phenyl group at C(2) of the imidazolone has been synthesized. Rotation around the exocyclic double bond is hindered, resulting in room-temperature fluorescence. The quantum yield in water is 500 times greater than that of unlocked analogues. Unlike the methyl-substituted analogue, the phenyl analogue exhibits a dual emission (cyan and red) that can be used for ultrasensitive ratiometric measurements and fluorescence microscopy. To explain this dual emission, DFT calculations were carried out along with fluorescence upconversion experiments. The Z-isomer was found to be emissive, while the origin of the dual emission was dependent on the phenyl group in the Z-isomer, which stabilizes the Franck-Condon state, resulting in a cyan fluorescence, while the zwitterionic tautomer fluoresces red. These results bring important new insights into the photophysics of the GFP chromophore and provide a new scaffold capable of dual emission with utility in biotechnology.

Original languageEnglish
Pages (from-to)738-749
Number of pages12
JournalJournal of the American Chemical Society
Volume142
Issue number2
DOIs
Publication statusPublished - 15 Jan 2020

Fingerprint Dive into the research topics of 'Room-temperature dual fluorescence of a locked green fluorescent protein chromophore analogue'. Together they form a unique fingerprint.

  • Cite this