ROS‐responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy

Meng Zheng, Yuanyuan Liu, YIbin Wang, Dongya Zhang, Yan Zou, Weimin Ruan, Jinlong Yin, Wei Tao, Jong Bae Park , Bingyang Shi

Research output: Contribution to journalArticle

20 Citations (Scopus)

Abstract

Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at‐site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I‐NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I‐NM@siRNA nanomedicine demonstrates effective at‐site siRNA release resulting from tumoral reactive oxygen species (ROS)‐triggered sequential destabilization. Furthermore, the utility of 3I‐NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I‐NM@siRNA nanomedicine with angiopep‐2 peptide is enhanced. The targeted Ang‐3I‐NM@siRNA exhibits superb blood–brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo‐like kinase 1 and vascular endothelial growth factor receptor‐2, Ang‐3I‐NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple‐interaction stabilization together with inbuilt self‐destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.
Original languageEnglish
Article number1903277
Pages (from-to)1-9
Number of pages9
JournalAdvanced Materials
Volume31
Issue number37
Early online date26 Jul 2019
DOIs
Publication statusPublished - 13 Sep 2019

Keywords

  • active targeting
  • combinational RNAi
  • glioblastoma
  • ROS-responsive
  • siRNA delivery

Fingerprint Dive into the research topics of 'ROS‐responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy'. Together they form a unique fingerprint.

  • Projects

    Cite this