Abstract
Time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy is used to study the kinetics of collision-induced state-to-state molecular energy transfer between rovibrational states in the 12700-cm-1 4νCH manifold of the electronic ground state of acetylene (C 2H2). Particular initial and final rovibrational J-states are prepared and monitored by a pair of tunable laser pulses (IR PUMP and UV PROBE) and the kinetic results recorded by continuously varying the time delay between those pulses at a set sample pressure. After allowing for collision-induced quenching of fluorescence and mass transfer from the IR-UV optical excitation zone (by beam fly out and diffusion), an array of kinetic data for J-resolved energy-transfer channels can be interpreted by means of a mechanistically structured master-equation model. This paper focuses on kinetics derived by probing C2H2 in its 4νCH J=12 state (which is affected by intramolecular perturbations and implicated in unusual collision-induced quasi-continuous background effects) and J-resolved collision-induced rovibrational energy transfer with both even ΔJ and (supposedly forbidden) odd ΔJ.
Original language | English |
---|---|
Pages (from-to) | 601-633 |
Number of pages | 33 |
Journal | Zeitschrift fur Physikalische Chemie |
Volume | 219 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2005 |