@inproceedings{9536ca740a784d3882dcd24b8f7470e4,
title = "Scalable misbehavior detection in online video chat services",
abstract = "The need for highly scalable and accurate detection and filtering of misbehaving users and obscene content in online video chat services has grown as the popularity of these services has exploded in popularity. This is a challenging problem because processing large amounts of video is compute intensive, decisions about whether a user is misbehaving or not must be made online and quickly, and moreover these video chats are characterized by low quality video, poorly lit scenes, diversity of users and their behaviors, diversity of the content, and typically short sessions. This paper presents EMeralD, a highly scalable system for accurately detecting and filtering misbehaving users in online video chat applications. EMeralD substantially improves upon the state-of-the-art filtering mechanisms by achieving much lower computational cost and higher accuracy. We demonstrate EMeralD's improvement via experimental evaluations on real-world data sets obtained from Chatroulette.com.",
keywords = "misbehavior detection, online video chat, video safety",
author = "Xinyu Xing and Yu-li Liang and Sui Huang and Hanqiang Cheng and Richard Han and Qin Lv and Xue Liu and Shivakant Mishra and Yi Zhu",
year = "2012",
doi = "10.1145/2339530.2339619",
language = "English",
isbn = "9781450314626",
series = "Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
publisher = "Association for Computing Machinery (ACM)",
pages = "552--560",
booktitle = "KDD'12 - 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
address = "United States",
note = "18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012 ; Conference date: 12-08-2012 Through 16-08-2012",
}