Abstract
Current knowledge of suture biology has been ascertained as a result of morphological studies of normal cranial sutures (and rarely those undergoing craniosynostosis). These were initially undertaken often using histological investigations, or more recently using CT scans, as investigative tools, but have often used animal models. However, recent technological advances have provided the potential to refine our understanding of the ultrastructure by the use of new advanced scanning technology, which offers the possibility of more detailed resolution.Our aim was to undertake detailed scans of normal, fusing and fused sutures from patients with craniosynosotosis affecting different sutures, to study the detailed structure at different stages of the fusion process using a modern micro-CT scanner and a microanalytical scanning electron microscope. We wished to include in our study all the human sutures because previous studies have mostly been undertaken using the sagittal suture.Ten sutures from seven patients have revealed a complex ultra-structural arrangement. The different patterns of bone ridging seen on the ectocranial and endocranial surfaces of the fused sagittal suture were not repeated on closer inspection of either fused coronal or lambdoid sutures. Elemental analysis confirmed that the amount of calcium increased and the amount of carbon decreased as sampled areas moved away from the suture margin. We conclude that scanning allowed detailed assessment and revealed the complex arrangement of the structure of the human cranial sutures and those undergoing the process of craniosynostosis, with some differences in final structure depending on the affected suture.
Original language | English |
---|---|
Pages (from-to) | 909-919 |
Number of pages | 11 |
Journal | Journal of Craniofacial Surgery |
Volume | 17 |
Issue number | 5 |
DOIs | |
Publication status | Published - Sept 2006 |
Externally published | Yes |
Keywords
- Cranial suture
- Craniosynostosis
- Micro-CT scan
- Scanning electron microscope