Short-term response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance

Support for the Intermediate Disturbance Hypothesis

Ka Man Lee*, S. Y. Lee, Rod M. Connolly

*Corresponding author for this work

Research output: Contribution to journalArticle

5 Citations (Scopus)


Many anthropogenic activities physically disturb urbanised coastal habitats. The functional response of ecosystems to physical disturbances remains largely unknown due to the lack of suitable quantitative tools for assessing impacts. We conducted a manipulative field experiment to investigate the short-term (i.e. temporally sensitive) response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance, using combined chemical tracer (13C), compartmental modelling and network analysis techniques. Pulse physical disturbance, as sediment pumping for an infaunal bait species, was applied at two disturbance intensities at the commencement of the experiment, in 0.09 m2 quadrats. Six compartments and three trophic levels in the estuarine sandflat food web were sampled, including the microphytobenthos, four meiofaunal groups, and soldier crabs (Mictyris longicarpus). Compared with undisturbed controls, in the low disturbance intensity treatment: 1) carbon flow rates between compartments increased, 2) carbon cycling increased, 3) more carbon was retained in the food web, and 4) system indices reflecting ecosystem functioning and resilience were higher. Low disturbance intensity facilitated carbon transfer between organisms and apparently increased resilience. Conversely, high disturbance intensity reduced carbon flow among compartments and carbon cycling, thus lowering resilience. This is the first study with field data quantifying structural and functional changes of sandflat food webs in response to physical disturbance and showed that both ecosystem structure and processes may support the Intermediate Disturbance Hypothesis. This alternative approach to assessing the immediate functional response of estuarine trophic interactions to physical disturbances allows impact detection not possible using conventional approaches.

Original languageEnglish
Pages (from-to)639-648
Number of pages10
JournalEstuarine, Coastal and Shelf Science
Issue number4
Publication statusPublished - 20 May 2011


  • Carbon flow
  • EcoNet
  • Energy pathways
  • Estuary
  • Meiofauna
  • Urbanisation

Fingerprint Dive into the research topics of 'Short-term response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance: Support for the Intermediate Disturbance Hypothesis'. Together they form a unique fingerprint.

  • Cite this