TY - JOUR
T1 - Short-term response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance
T2 - Support for the Intermediate Disturbance Hypothesis
AU - Lee, Ka Man
AU - Lee, S. Y.
AU - Connolly, Rod M.
PY - 2011/5/20
Y1 - 2011/5/20
N2 - Many anthropogenic activities physically disturb urbanised coastal habitats. The functional response of ecosystems to physical disturbances remains largely unknown due to the lack of suitable quantitative tools for assessing impacts. We conducted a manipulative field experiment to investigate the short-term (i.e. temporally sensitive) response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance, using combined chemical tracer (13C), compartmental modelling and network analysis techniques. Pulse physical disturbance, as sediment pumping for an infaunal bait species, was applied at two disturbance intensities at the commencement of the experiment, in 0.09 m2 quadrats. Six compartments and three trophic levels in the estuarine sandflat food web were sampled, including the microphytobenthos, four meiofaunal groups, and soldier crabs (Mictyris longicarpus). Compared with undisturbed controls, in the low disturbance intensity treatment: 1) carbon flow rates between compartments increased, 2) carbon cycling increased, 3) more carbon was retained in the food web, and 4) system indices reflecting ecosystem functioning and resilience were higher. Low disturbance intensity facilitated carbon transfer between organisms and apparently increased resilience. Conversely, high disturbance intensity reduced carbon flow among compartments and carbon cycling, thus lowering resilience. This is the first study with field data quantifying structural and functional changes of sandflat food webs in response to physical disturbance and showed that both ecosystem structure and processes may support the Intermediate Disturbance Hypothesis. This alternative approach to assessing the immediate functional response of estuarine trophic interactions to physical disturbances allows impact detection not possible using conventional approaches.
AB - Many anthropogenic activities physically disturb urbanised coastal habitats. The functional response of ecosystems to physical disturbances remains largely unknown due to the lack of suitable quantitative tools for assessing impacts. We conducted a manipulative field experiment to investigate the short-term (i.e. temporally sensitive) response of estuarine sandflat trophodynamics to pulse anthropogenic physical disturbance, using combined chemical tracer (13C), compartmental modelling and network analysis techniques. Pulse physical disturbance, as sediment pumping for an infaunal bait species, was applied at two disturbance intensities at the commencement of the experiment, in 0.09 m2 quadrats. Six compartments and three trophic levels in the estuarine sandflat food web were sampled, including the microphytobenthos, four meiofaunal groups, and soldier crabs (Mictyris longicarpus). Compared with undisturbed controls, in the low disturbance intensity treatment: 1) carbon flow rates between compartments increased, 2) carbon cycling increased, 3) more carbon was retained in the food web, and 4) system indices reflecting ecosystem functioning and resilience were higher. Low disturbance intensity facilitated carbon transfer between organisms and apparently increased resilience. Conversely, high disturbance intensity reduced carbon flow among compartments and carbon cycling, thus lowering resilience. This is the first study with field data quantifying structural and functional changes of sandflat food webs in response to physical disturbance and showed that both ecosystem structure and processes may support the Intermediate Disturbance Hypothesis. This alternative approach to assessing the immediate functional response of estuarine trophic interactions to physical disturbances allows impact detection not possible using conventional approaches.
KW - Carbon flow
KW - EcoNet
KW - Energy pathways
KW - Estuary
KW - Meiofauna
KW - Urbanisation
UR - http://www.scopus.com/inward/record.url?scp=79955078822&partnerID=8YFLogxK
U2 - 10.1016/j.ecss.2011.03.003
DO - 10.1016/j.ecss.2011.03.003
M3 - Article
AN - SCOPUS:79955078822
SN - 0272-7714
VL - 92
SP - 639
EP - 648
JO - Estuarine, Coastal and Shelf Science
JF - Estuarine, Coastal and Shelf Science
IS - 4
ER -