Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa)

Sonja Aulbach*, Andrea Giuliani*, Marco L. Fiorentini, Raphael J. Baumgartner, Dany Savard, Vadim S. Kamenetsky, Stefano Caruso, Leonid V. Danyushevky, Will Powell, William L. Griffin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)
23 Downloads (Pure)

Abstract

The metasomatised continental mantle may play a key role in the generation of some ore deposits, in particular mineral systems enriched in platinum-group elements (PGE) and Au. The cratonic lithosphere is the longest-lived potential source for these elements, but the processes that facilitate their pre-concentration in the mantle and their later remobilisation to the crust are not yet well-established. Here, we report new results on the petrography, major-element, and siderophile- and chalcophile-element composition of native Ni, base metal sulphides (BMS), and spinels in a suite of well-characterised, highly metasomatised and weakly serpentinised peridotite xenoliths from the Bultfontein kimberlite in the Kaapvaal Craton, and integrate these data with published analyses. Pentlandite in polymict breccias (failed kimberlite intrusions at mantle depth) has lower trace-element contents (e.g., median total PGE 0.72 ppm) than pentlandite in phlogopite peridotites and Mica-Amphibole-Rutile-Ilmenite-Diopside (MARID) rocks (median 1.6 ppm). Spinel is an insignificant host for all elements except Zn, and BMS and native Ni account for typically <25% of the bulk-rock PGE and Au. High bulk-rock Te/S suggest a role for PGE-bearing tellurides, which, along with other compounds of metasomatic origin, may host the missing As, Ag, Cd, Sb, Te and, in part, Bi that are unaccounted for by the main assemblage.

The close spatial relationship between BMS and metasomatic minerals (e.g., phlogopite, ilmenite) indicates that the lithospheric mantle beneath Bultfontein was resulphidised by metasomatism after initial melt depletion during stabilisation of the cratonic lithosphere. Newly-formed BMS are markedly PGE-poor, as total PGE contents are <4.2 ppm in pentlandite from seven samples, compared to >26 ppm in BMS in other peridotite xenoliths from the Kaapvaal craton. This represents a strong dilution of the original PGE abundances at the mineral scale, perhaps starting from precursor PGE alloy and small volumes of residual BMS. The latter may have been the precursor to native Ni, which occurs in an unusual Ni-enriched zone in a harzburgite and displays strongly variable, but overall high PGE abundances (up to 81 ppm). In strongly metasomatised peridotites, Au is enriched relative to Pd, and was probably added along with S. A combination of net introduction of S, Au +/− PGE from the asthenosphere and intra-lithospheric redistribution, in part sourced from subducted materials, during metasomatic events may have led to sulphide precipitation at ~80–120 km beneath Bultfontein. This process locally enhanced the metallogenic fertility of this lithospheric reservoir. Further mobilisation of the metal budget stored in these S-rich domains and upwards transport into the crust may require interaction with sulphide-undersaturated melts that can dissolve sulphides along with the metals they store.

Original languageEnglish
Article number105880
Pages (from-to)1-26
Number of pages26
JournalLithos
Volume380-381
DOIs
Publication statusPublished - Jan 2021

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Platinum-group elements
  • Highly siderophile elements
  • Alloy
  • Base metal sulphides
  • Cratonic lithosphere
  • Metasomatism

Fingerprint

Dive into the research topics of 'Siderophile and chalcophile elements in spinels, sulphides and native Ni in strongly metasomatised xenoliths from the Bultfontein kimberlite (South Africa)'. Together they form a unique fingerprint.

Cite this