Simulation of MREIT using balanced steady state free precession (b-SSFP) pulse sequence

Atul S Minhas, Eung Je Woo, R. Sadleir

Research output: Contribution to journalConference paper

4 Citations (Scopus)

Abstract

Magnetic resonance electrical impedance tomography (MREIT) utilizes the relation between conductivity and magnetic flux density induced by externally injected current to perform conductivity imaging of body tissues. A spin echo pulse sequence has been predominantly used in MREIT to acquire the z-component Bz of the induced magnetic flux density data from MR phase images. Spin echo based MREIT pulse sequences are most stable and successful in producing high-resolution conductivity images in postmortem and in vivo animal and human experiments. In some applications, localization of a physiological event is desirable. Examples may include detection of neural activities through conductivity changes. In such a case, it would be necessary to maximize the sensitivity. In this paper, we suggest using a balanced steady state free precession (b-SSFP) pulse sequence to localize a small conductivity change. The induced magnetic flux density Bz subject to an injection current makes an off-resonance phase in b-SSFP signals. We expect the high sensitivity of b-SSFP signals to any off-resonance phase change will be advantageous for detecting a small conductivity change. Using computer simulations, we show the feasibility of functional or time-difference MREIT using the b-SSFP pulse sequence.

Original languageEnglish
Article number012019
Number of pages4
JournalJournal of Physics: Conference Series
Volume224
Issue number1
DOIs
Publication statusPublished - 2010
Externally publishedYes
EventInternational Conference on Electrical Bioimpedance (14th :2010) - University of Florida, United States
Duration: 4 Apr 20108 Apr 2010

Fingerprint Dive into the research topics of 'Simulation of MREIT using balanced steady state free precession (b-SSFP) pulse sequence'. Together they form a unique fingerprint.

Cite this