TY - JOUR
T1 - Single-cell oxidative stress events revealed by a renewable SERS nanotip
AU - Chen, Jiamin
AU - Wang, Jiaqi
AU - Geng, Yijia
AU - Yue, Jing
AU - Shi, Wei
AU - Liang, Chongyang
AU - Xu, Weiqing
AU - Xu, Shuping
PY - 2021/4/23
Y1 - 2021/4/23
N2 - A nanotip sensitive to reactive oxygen species (ROS) and NAD+/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe3+ ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and H2O2) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD+/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.
AB - A nanotip sensitive to reactive oxygen species (ROS) and NAD+/NADH (oxidized/reduced forms of nicotinamide adenine dinucleotide) was designed and prepared to identify the redox events in a single living cell by surface-enhanced Raman scattering (SERS) spectroscopy. The nanotips were prepared by the one-step laser-induced Ag growth and deposition. A redox-reversible Raman reporter, 4-mercaptophenol (4-MP), was employed for the nanotip decoration along with the Ag deposition. 4-MP can be converted to SERS-inactive 4-mercaptocyclohexa-2,5-dienone (4-MC) by Fe3+ ions to complete signal rezeroing for multiple oxidative stress event loops. The SERS signal conversion from 4-MC to 4-MP provides a cue for the reduction process that is NADH-dependent. In contrast, by the conversion from 4-MP to 4-MC, the oxidative stress events and the signal transduction mechanism of cells stimulated by drugs (phorbol 12-myristate 13-acetate and H2O2) can be explored by SERS. This sensor is easy to fabricate and can be recycled. This tip-typed SERS nanosensor can be extendedly available for tracing other key markers in other NAD+/NADH-mediated respiratory chain and glycolysis, e.g., lactic acid, pyruvic acid, adenosine triphosphate, and antioxidants. It will be useful for investigating the diseases of abnormal oxidative stress and mitochondrial metabolism at the single-cell level.
KW - surface-enhanced Raman scattering
KW - 4-mercaptophenol
KW - reactive oxygen species
KW - single-cell analysis
KW - oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=85104909995&partnerID=8YFLogxK
U2 - 10.1021/acssensors.1c00395
DO - 10.1021/acssensors.1c00395
M3 - Article
C2 - 33784081
AN - SCOPUS:85104909995
SN - 2379-3694
VL - 6
SP - 1663
EP - 1670
JO - ACS Sensors
JF - ACS Sensors
IS - 4
ER -