Abstract
The main purpose of this paper is to study multi-parameter singular integral operators which commute with Zygmund dilations. Motivated by some explicit examples of singular integral operators studied in Ricci and Stein (Ann Inst Fourier (Grenoble) 42:637–670, 1992), Fefferman and Pipher (Am J Math 11:337–369, 1997), and Nagel and Wainger (Am J Math 99:761–785, 1977), we introduce a class of singular integral operators on R3 associated with Zygmund dilations by providing suitable version of regularity conditions and cancellation conditions on convolution kernels, and then show the boundedness for this class of operators on Lp, 1 < p< ∞.
Original language | English |
---|---|
Pages (from-to) | 2410-2455 |
Number of pages | 46 |
Journal | Journal of Geometric Analysis |
Volume | 29 |
Issue number | 3 |
Early online date | 23 Aug 2018 |
DOIs | |
Publication status | Published - Jul 2019 |
Bibliographical note
Copyright the Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Multi-parameter singular integral operators
- Zygmund dilations
- Zygmund type cancellation