Six new supermassive black hole mass determinations from adaptive-optics assisted SINFONI observations

Sabine Thater*, Davor Krajnović, Michele Cappellari, Timothy A. Davis, P. Tim de Zeeuw, Richard M. MCdermid, Marc Sarzi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Different massive black hole mass – host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited and additional measurements are necessary to understand the underlying physics of this apparent coevolution. We add six new black hole mass (MBH) measurements of nearby fast rotating early-type galaxies to the known black hole mass sample, namely NGC 584, NGC 2784, NGC 3640, NGC 4570, NGC 4281, and NGC 7049. Our target galaxies have effective velocity dispersions (σe) between 170 and 245 km s−1, and thus this work provides additional insight into the black hole properties of intermediate-mass early-type galaxies. We combined high-resolution adaptive-optics SINFONI data with large-scale MUSE, VIMOS and SAURON data from ATLAS3D to derive two-dimensional stellar kinematics maps. We then built both Jeans Anisotropic Models and axisymmetric Schwarzschild models to measure the central black hole masses. Our Schwarzschild models provide black hole masses of (1.3 ± 0.5) × 108M for NGC 584, (1.0 ± 0.6) × 108M for NGC 2784, (7.7 ± 5) × 107M for NGC 3640, (5.4 ± 0.8) × 108M for NGC 4281, (6.8 ± 2.0) × 107M for NGC 4570, and (3.2 ± 0.8) × 108M for NGC 7049 at 3σ confidence level, which are consistent with recent MBHσe scaling relations. NGC 3640 has a velocity dispersion dip and NGC 7049 a constant velocity dispersion in the center, but we can clearly constrain their lower black hole mass limit. We conclude our analysis with a test on NGC 4570 taking into account a variable mass-to-light ratio (M/L) when constructing dynamical models. When considering M/L variations linked mostly to radial changes in the stellar metallicity, we find that the dynamically determined black hole mass from NGC 4570 decreases by 30%. Further investigations are needed in the future to account for the impact of radial M/L gradients on dynamical modeling.

Original languageEnglish
Article numberA62
Pages (from-to)1-30
Number of pages30
JournalAstronomy and Astrophysics
Volume625
DOIs
Publication statusPublished - 13 May 2019

Bibliographical note

Reproduced with permission from Astronomy & Astrophysics, Copyright 2019 ESO. First published in Astronomy and Astrophysics, 625, A62, 2019, published by EDP Sciences. The original publication is available at https://doi.org/10.1051/0004-6361/201834808. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • galaxies: kinematics and dynamics
  • quasars: supermassive black holes

Cite this