Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria)

M. Coltorti*, C. Bonadiman, B. Faccini, T. Ntaflos, F. Siena

*Corresponding author for this work

Research output: Contribution to journalArticle

30 Citations (Scopus)

Abstract

Anhydrous and amphibole-bearing mantle peridotite xenoliths from Kapfenstein (Styrian Basin) have been studied with the aim of understanding both the processes responsible for amphibole formation and the nature of metasomatizing agents which affected this portion of lithosphere. This area of the Pannonian Basin underwent a subduction event which was followed after about 15 Ma, by alkaline intraplate magmatism. Primary clinopyroxene (cpx1) in four-phase lherzolite xenoliths is characterized by LREE-depleted to slightly LREE-enriched patterns. LREE-depleted cpx1 have low Th and U contents and Zr (and Hf) anomalies varying from slightly negative to positive. LREE-enriched cpx have high Th and U contents and remarkable positive anomalies of Zr and Hf. Primary clinopyroxenes in amphibole-bearing lherzolites present a comparable compositional variation from LREE (and Th, U, Zr, Hf)-depleted type to LREE (and Th, U, Zr, Hf)-enriched type. LREE-depleted cpx1, with strong negative Zr and Ti anomalies, are also recognized in the peridotite matrix of a composite sample cut by a large amphibole vein. Textural and geochemical evidence indicates that amphibole disseminated within the matrix grew at the expense of primary spinel and clinopyroxene, mimicking the trace element patterns of the latter. As a consequence, the geochemical features of amphibole vary in relation to those of clinopyroxene, from enriched to depleted. On the other hand, the composition of vein amphibole in the composite xenolith compares well with amphibole megacrysts and microphenocrysts, suggesting that it represents a fractionation product of alkaline melt that passed through the lithosphere. Two kinds of metasomatism, superimposed on a slightly depleted lithospheric mantle, were identified. A slab-derived melt (proto-adakite?) metasomatic agent was responsible for the first enrichment in Th, U, Zr and Hf observed in clinopyroxene, whereas an alkaline within-plate metasomatic agent caused the formation of the Nb (and Ta)- rich disseminated amphibole. The final process was the alkaline magmatism, which was responsible for the formation of the large amphibole vein and megacrysts. It is proposed that the Nb-poor and Nb-rich amphiboles record the transition between the suprasubduction slab melt-related and the intraplate alkaline metasomatism. These geochemical features are consistent with a lithospheric portion enriched in slab melt components which was subsequently metasomatized by alkaline melt. Alternatively an asthenospheric uprising could have scavenged a previously slab melt-enriched region of the lithosphere.

Original languageEnglish
Pages (from-to)66-89
Number of pages24
JournalLithos
Volume94
Issue number1-4
DOIs
Publication statusPublished - Mar 2007
Externally publishedYes

Keywords

  • Lithospheric mantle
  • Styria Basin
  • Suprasubduction and intraplate metasomatism
  • Xenoliths

Fingerprint Dive into the research topics of 'Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria)'. Together they form a unique fingerprint.

Cite this