TY - JOUR
T1 - Snoring-related energy transmission to the carotid artery in rabbits
AU - Amatoury, Jason
AU - Howitt, Lauren
AU - Wheatley, John R.
AU - Avolio, Albert P.
AU - Amis, Terence C.
PY - 2006/5
Y1 - 2006/5
N2 - Epidemiological studies link habitual snoring and stroke, but mechanisms involved are poorly understood. One previously advanced hypothesis is that transmitted snoring vibration energy may promote carotid atheromatous plaque formation or rupture. To test whether vibration energy is present in carotid artery walls during snoring we developed an animal model in which we examined induced snoring (IS)-associated tissue energy levels. In six male, supine, anesthetized, spontaneously breathing New Zealand White rabbits, we surgically inserted pressure transducer-tipped catheters (Millar) to monitor tissue pressure at the carotid artery bifurcation (PCT) and within the carotid sinus lumen (PCS; artery ligated). Snoring was induced via external compression (sandbag) over the pharyngeal region. Data were analyzed using power spectral analysis for frequency bands above and below 50 Hz. For frequencies below 50 Hz, PCT energy was 2.2 (1.1-12.3) cmH 2O2 [median (interquartile range)] during tidal breathing (TB) increasing to 39.0 (2.5-95.0) cmH2O2 during IS (P = 0.05, Wilcoxon's signed-rank test). For frequencies >50 Hz, PCT energy increased from 9.2 (8.3-10.4) × 10-4 cmH 2O2 during TB to 172.0 (118.0-569.0) × 10 -4 cmH2O2 during IS (P < 0.03). Concurrently, PCS energy was 13.4 (8.5-18.0) × 10-4 cmH2O2 during TB and 151.0 (78.2-278.8) × 10 -4 cmH2O2 during IS (P < 0.03). The P CS energy was greater than PCT energy for the 100-275 Hz bandwidth. In conclusion, during IS there is increased energy around and within the carotid artery, including lower frequency amplification for PCS. These findings may have implications for carotid atherogenesis and/or plaque rupture.
AB - Epidemiological studies link habitual snoring and stroke, but mechanisms involved are poorly understood. One previously advanced hypothesis is that transmitted snoring vibration energy may promote carotid atheromatous plaque formation or rupture. To test whether vibration energy is present in carotid artery walls during snoring we developed an animal model in which we examined induced snoring (IS)-associated tissue energy levels. In six male, supine, anesthetized, spontaneously breathing New Zealand White rabbits, we surgically inserted pressure transducer-tipped catheters (Millar) to monitor tissue pressure at the carotid artery bifurcation (PCT) and within the carotid sinus lumen (PCS; artery ligated). Snoring was induced via external compression (sandbag) over the pharyngeal region. Data were analyzed using power spectral analysis for frequency bands above and below 50 Hz. For frequencies below 50 Hz, PCT energy was 2.2 (1.1-12.3) cmH 2O2 [median (interquartile range)] during tidal breathing (TB) increasing to 39.0 (2.5-95.0) cmH2O2 during IS (P = 0.05, Wilcoxon's signed-rank test). For frequencies >50 Hz, PCT energy increased from 9.2 (8.3-10.4) × 10-4 cmH 2O2 during TB to 172.0 (118.0-569.0) × 10 -4 cmH2O2 during IS (P < 0.03). Concurrently, PCS energy was 13.4 (8.5-18.0) × 10-4 cmH2O2 during TB and 151.0 (78.2-278.8) × 10 -4 cmH2O2 during IS (P < 0.03). The P CS energy was greater than PCT energy for the 100-275 Hz bandwidth. In conclusion, during IS there is increased energy around and within the carotid artery, including lower frequency amplification for PCS. These findings may have implications for carotid atherogenesis and/or plaque rupture.
KW - Atherosclerosis
KW - Stroke
UR - http://www.scopus.com/inward/record.url?scp=33646405437&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.01439.2005
DO - 10.1152/japplphysiol.01439.2005
M3 - Article
C2 - 16455812
AN - SCOPUS:33646405437
SN - 8750-7587
VL - 100
SP - 1547
EP - 1553
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 5
ER -