TY - JOUR
T1 - Soil production in heath and forest, Blue Mountains, Australia
T2 - Influence of lithology and palaeoclimate
AU - Wilkinson, Marshall
AU - Chappell, John
AU - Humphreys, Geoff
AU - Fifield, Keith
AU - Smith, Bart
AU - Hesse, Paul
N1 - An erratum for this article exists and can be found in Earth Surface Processes and Landforms, vol. 30, issue 13, pp. 1683-1685. DOI: 10.1002/esp.1311
PY - 2005/8
Y1 - 2005/8
N2 - Recent determinations of soil production from in situ cosmogenic nuclides indicate that production decreases exponentially with soil depth. This contrasts with a long-held assumption that maximum soil production occurs under a soil cover of finite depth. Sites in the Blue Mountains, Australia, show a sharp decrease of soil depth where vegetation changes from forested plateau surfaces to heath-covered spurs, and bands of bare rock in the heath suggest that soil production depends on presence of a finite depth of soil. The substrate varies from hard ferruginized sandstone to soft saprolite. In situ 10Be determinations indicate that apparent rates of erosion and soil production are greater under the relatively thin heath soil than under the thicker forest soil but, in contrast to other studies, these sites do not show significant depth-dependence of apparent soil production. The pattern reflects both hardness variation in the rock substrate and the effect of Late Quaternary climatic change. Optically stimulated luminescence (OSL) dating indicates that soil ≤30 cm depth is of Holocene age whereas the deeper soil is substantially older. The age-break coincides with a stone line interpreted as a former surface lag deposit. Assuming that pre-Holocene soil depths were 30 cm less than today, recalculated soil production tends to decrease with increasing depth. Soil production at this site requires soil cover but bare rock patches and vegetation comprise a shifting mosaic. In the long term, average rates of erosion and soil production decrease with increasing soil depth.
AB - Recent determinations of soil production from in situ cosmogenic nuclides indicate that production decreases exponentially with soil depth. This contrasts with a long-held assumption that maximum soil production occurs under a soil cover of finite depth. Sites in the Blue Mountains, Australia, show a sharp decrease of soil depth where vegetation changes from forested plateau surfaces to heath-covered spurs, and bands of bare rock in the heath suggest that soil production depends on presence of a finite depth of soil. The substrate varies from hard ferruginized sandstone to soft saprolite. In situ 10Be determinations indicate that apparent rates of erosion and soil production are greater under the relatively thin heath soil than under the thicker forest soil but, in contrast to other studies, these sites do not show significant depth-dependence of apparent soil production. The pattern reflects both hardness variation in the rock substrate and the effect of Late Quaternary climatic change. Optically stimulated luminescence (OSL) dating indicates that soil ≤30 cm depth is of Holocene age whereas the deeper soil is substantially older. The age-break coincides with a stone line interpreted as a former surface lag deposit. Assuming that pre-Holocene soil depths were 30 cm less than today, recalculated soil production tends to decrease with increasing depth. Soil production at this site requires soil cover but bare rock patches and vegetation comprise a shifting mosaic. In the long term, average rates of erosion and soil production decrease with increasing soil depth.
UR - http://www.scopus.com/inward/record.url?scp=24944585158&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/record.url?scp=30444433527&partnerID=8YFLogxK
UR - http://doi.org/10.1002/esp.1311
U2 - 10.1002/esp.1254
DO - 10.1002/esp.1254
M3 - Article
AN - SCOPUS:24944585158
SN - 0197-9337
VL - 30
SP - 923
EP - 934
JO - Earth Surface Processes and Landforms
JF - Earth Surface Processes and Landforms
IS - 8
ER -