TY - JOUR
T1 - Southwest Australia Seismic Network (SWAN)
T2 - recording earthquakes in Australia's most active seismic zone
AU - Miller, Meghan S.
AU - Pickle, Robert
AU - Murdie, Ruth
AU - Yuan, Huaiyu
AU - Allen, Trevor I.
AU - Gessner, Klaus
AU - Kennett, Brain L. N.
AU - Whitney, Justin
PY - 2023/3
Y1 - 2023/3
N2 - The geological structure of southwest Australia comprises a rich, complex record of Precambrian cratonization and Phanerozoic continental breakup. Despite the stable continental cratonic geologic history, over the past five decades the southwest of Western Australia has been the most seismically active region in continental Australia, though the reason for this activity is not yet well understood. The Southwest Australia Seismic Network (SWAN) is a temporary broadband network of 27 stations that was designed to both record local earthquakes for seismic hazard applications and provide the opportunity to dramatically improve the rendering of 3D seismic structure in the crust and mantle lithosphere. Such seismic data are essential for better characterization of the location, depth, and attenuation of the regional earthquakes, and hence understanding of earthquake hazard. During the deployment of these 27 broadband instruments, a significant earthquake swarm occurred that included three earthquakes of local magnitude 4.0 and larger, and the networkwas supplemented by an additional six short-term nodal seismometers at 10 separate sites in early 2022, as a rapid deployment to monitor this swarm activity. The SWAN experiment has been continuously recording since late 2020 and will continue into 2023. These data are archived at the International Federation of Digital Seismograph Networks (FDSN) - recognized Australian Passive Seismic (AusPass) Data center under network code 2P and will be publicly available in 2025.
AB - The geological structure of southwest Australia comprises a rich, complex record of Precambrian cratonization and Phanerozoic continental breakup. Despite the stable continental cratonic geologic history, over the past five decades the southwest of Western Australia has been the most seismically active region in continental Australia, though the reason for this activity is not yet well understood. The Southwest Australia Seismic Network (SWAN) is a temporary broadband network of 27 stations that was designed to both record local earthquakes for seismic hazard applications and provide the opportunity to dramatically improve the rendering of 3D seismic structure in the crust and mantle lithosphere. Such seismic data are essential for better characterization of the location, depth, and attenuation of the regional earthquakes, and hence understanding of earthquake hazard. During the deployment of these 27 broadband instruments, a significant earthquake swarm occurred that included three earthquakes of local magnitude 4.0 and larger, and the networkwas supplemented by an additional six short-term nodal seismometers at 10 separate sites in early 2022, as a rapid deployment to monitor this swarm activity. The SWAN experiment has been continuously recording since late 2020 and will continue into 2023. These data are archived at the International Federation of Digital Seismograph Networks (FDSN) - recognized Australian Passive Seismic (AusPass) Data center under network code 2P and will be publicly available in 2025.
UR - http://www.scopus.com/inward/record.url?scp=85151004829&partnerID=8YFLogxK
U2 - 10.1785/0220220323
DO - 10.1785/0220220323
M3 - Article
AN - SCOPUS:85151004829
SN - 0895-0695
VL - 94
SP - 999
EP - 1011
JO - Seismological Research Letters
JF - Seismological Research Letters
IS - 2A
ER -