Starch biocomposites preparation by incorporating organosolv lignins from potato crop residues

Shiva Zolfaghari, Ali Soltaninejad, Oseweuba Valentine Okoro, Amin Shavandi, Joeri F. M. Denayer, Morteza Sadeghi, Keikhosro Karimi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Plastic wastes accumulated due to food packaging pose environmental threats. This study proposes biopolymeric films containing lignins extracted from potato crop residues (PCR) through organosolv treatment as a green alternative to non-degradable food packaging. The isolation process yielded 43.9 wt% lignins with a recovery rate of 73.5 wt% achieved under optimum conditions at 180 °C with 50 % v/v ethanol. The extracted lignins were then incorporated into a starch matrix to create biocomposite films. ATR-FTIR analysis confirmed interactions between the starch matrix and extracted lignins, and XRD analysis showed the amorphous structure of lignins, reducing film crystallinity. The addition of 1 wt% of extracted lignins resulted in a 87 % reduction in oxygen permeability, a 25 % increase in the thermal stability of the film, and a 78 % enhancement in antioxidant. Furthermore, introducing 3 wt% lignins led to the lowest water vapor transmission rate, measuring 9.3 × 10−7 kg/s·m2. Morphological studies of the films demonstrated a homogeneous and continuous structure on both the surface and cross-sectional areas when the lignins content was below 7 wt%. These findings highlight the potential of using organosolv lignins derived from potato crop residues as a promising additive for developing eco-friendly films designed for sustainable food packaging.

Original languageEnglish
Article number129140
Pages (from-to)1-13
Number of pages13
JournalInternational Journal of Biological Macromolecules
Volume259, Part 2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • biopolymer
  • crop waste valorization
  • food packaging

Cite this