TY - JOUR

T1 - Statistical evaluation of MT and AMT methods applied to a basalt‐covered area in Southeastern Anatolia, Turkey

AU - ILKISIK, O. M.

AU - JONES, A. G.

PY - 1984

Y1 - 1984

N2 - The efficacy of the magnetotelluric and audiomagnetotelluric (MT/AMT) methods for detailing the structure of a hypothetical geological section is investigated by using the singular value decomposition (SVD) technique. The section is representative of southeastern Turkey, which is mostly covered by basalt and is a prime area for oil exploration. One of the geological units, the Germav shale at a depth of 600 m, is a problem layer for electromagnetic surveys because of its very low resistivity (on average 3 Ωm) and highly variable thickness across the area (200–900 m). In the MT frequency range (0.0004–40 Hz) its total conductance—or, since its resistivity is known from resistivity log information, its thickness—is the best resolved model parameter. The total depth to the Germav shale and the resistivity of the Cambrian/Precambrian basement are the marginally resolved parameters. In the AMT frequency range (4–10000 Hz) the resistivity of the surface basalt layer strongly affects the resolution of the other, less important, model parameters which are the total depth to the Germav shale and the total conductance of the Germav shale. The errors in the measurements determine the number of model parameters resolvable, and are also important for interpretation of the geological model parameters to within a desired accuracy. It is shown that statistical evaluation of the MT and/or AMT interpretations by using an SVD factorization of the sensitivity matrix can be helpful to define the importance of some particular stage of the interpretation, and also provides a priori knowledge to plan a proposed survey. Arrangements of MT and AMT observations, together with some Schlumberger resistivity soundings, on a large grid will certainly provide three‐dimensional detailed information of the deep geoelectric structure of the area.

AB - The efficacy of the magnetotelluric and audiomagnetotelluric (MT/AMT) methods for detailing the structure of a hypothetical geological section is investigated by using the singular value decomposition (SVD) technique. The section is representative of southeastern Turkey, which is mostly covered by basalt and is a prime area for oil exploration. One of the geological units, the Germav shale at a depth of 600 m, is a problem layer for electromagnetic surveys because of its very low resistivity (on average 3 Ωm) and highly variable thickness across the area (200–900 m). In the MT frequency range (0.0004–40 Hz) its total conductance—or, since its resistivity is known from resistivity log information, its thickness—is the best resolved model parameter. The total depth to the Germav shale and the resistivity of the Cambrian/Precambrian basement are the marginally resolved parameters. In the AMT frequency range (4–10000 Hz) the resistivity of the surface basalt layer strongly affects the resolution of the other, less important, model parameters which are the total depth to the Germav shale and the total conductance of the Germav shale. The errors in the measurements determine the number of model parameters resolvable, and are also important for interpretation of the geological model parameters to within a desired accuracy. It is shown that statistical evaluation of the MT and/or AMT interpretations by using an SVD factorization of the sensitivity matrix can be helpful to define the importance of some particular stage of the interpretation, and also provides a priori knowledge to plan a proposed survey. Arrangements of MT and AMT observations, together with some Schlumberger resistivity soundings, on a large grid will certainly provide three‐dimensional detailed information of the deep geoelectric structure of the area.

UR - http://www.scopus.com/inward/record.url?scp=0021479954&partnerID=8YFLogxK

U2 - 10.1111/j.1365-2478.1984.tb01715.x

DO - 10.1111/j.1365-2478.1984.tb01715.x

M3 - Article

AN - SCOPUS:0021479954

SN - 0016-8025

VL - 32

SP - 706

EP - 724

JO - Geophysical Prospecting

JF - Geophysical Prospecting

IS - 4

ER -