Stochastic payments per claim incurred

Guangyuan Gao, Shengwang Meng*, Yanlin Shi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a Bayesian model to quantify the uncertainty associated with the payments per claim incurred (PPCI) algorithm. Based on the PPCI algorithm, two submodels are proposed for the number of reported claims run-off triangle and the PPCI run-off triangle, respectively. The model for the claims amount is then derived from the two submodels under the assumption of independence between the number of incurred claims and the PPCI. The joint likelihood of the number of reported claims and claims amount is derived. The posterior distribution of parameters is estimated via the Hamiltonian Monte Carlo (HMC) sampling approach. The Bayesian estimator, the process variance, the estimation variance, and the predictive distribution of unpaid claims are also studied. The proposed model and the HMC inference engine are applied to to an empirical claims dataset of the WorkSafe Victoria to estimate the unpaid claims of the doctor benefit. The Bayesian modeling procedure is further refined by including a preliminary generalized linear model analysis. The results are compared with those in a PwC report. An alternative model is compared with the proposed model based on various information criteria.

Original languageEnglish
Pages (from-to)11-26
Number of pages16
JournalNorth American Actuarial Journal
Volume23
Issue number1
Early online date3 Jan 2019
DOIs
Publication statusPublished - 2019

Fingerprint Dive into the research topics of 'Stochastic payments per claim incurred'. Together they form a unique fingerprint.

Cite this