Structure of XynB, a highly thermostable β-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution

A. A. McCarthy, D. D. Morris, P. L. Bergquist, E. N. Baker*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)

Abstract

Microorganisms employ a large array of enzymes to break down the cellulose and hemicelluloses of plant biomass. These enzymes, especially those with high thermal stability, have many uses in biotechnology. We have solved the crystal structure of a β-1,4-xylanase, XynB, from the extremely thermophilic bacterium Dictyoglomus thermophilum, isolate Rt46B.1. The protein crystallized from 1.6 M ammonium sulfate, 0.2 M HEPES pH 7.2 and 10% glycerol, with unit-cell parameters a = b = 91.3, c = 44.9 Å and space group P43. The structure was solved at high resolution (1.8 Å) by X-ray crystallography, using the method of isomorphous replacement with a single mercury derivative, and refined to a final R factor of 18.3% (R(free) = 22.1%). XynB has the single-domain fold typical of family 11 xylanases, comprising a jelly roll of two highly twisted β-sheets that create a deep substrate-binding cleft. The two catalytic residues, Glu90 and Glu180, occupy this cleft. Compared with other family 11 xylanases, XynB has a greater proportion of polar surface and has a slightly extended C-terminus that, combined with the extension of β-strand A5, gives additional hydrogen bonding and hydrophobic packing. These factors may account for the enhanced thermal stability of the enzyme.

Original languageEnglish
Pages (from-to)1367-1375
Number of pages9
JournalActa Crystallographica Section D: Biological Crystallography
Volume56
Issue number11
DOIs
Publication statusPublished - 2000
Externally publishedYes

Fingerprint

Dive into the research topics of 'Structure of XynB, a highly thermostable β-1,4-xylanase from Dictyoglomus thermophilum Rt46B.1, at 1.8 Å resolution'. Together they form a unique fingerprint.

Cite this