Synthesis, cytotoxicity, cell uptake and DNA interstrand cross-linking of 4,4′-dipyrazolylmethane-linked multinuclear platinum anti-cancer complexes

Nial J. Wheate, Carleen Cullinane, Lorraine K. Webster, J. Grant Collins

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

Two cationic multinuclear platinum complexes linked with the 4,4'-dipyrazolylmethane (dpzm) ligand, trans-[[Pt(NH3)2Cl]2-mu-dpzm]Cl2 (di-Pt) and trans-[trans-[Pt(NH3)2Cl]2[trans-[Pt(NH3)2(mu-dpzm)2]]]Cl4 (tri-Pt), have been synthesized. Both complexes show activity in the murine leukaemia cell line L1210 (IC50 = 3.8 and 2.5 microm, respectively) and the cisplatin-resistant subline L1210/DDP (8.8 and 3.6 microM), and in the human ovarian carcinoma 2008 (2.5 and 17.8 microM) and its cisplatin-resistant subline C13*5 (20.9 and 37.7 microM). Both complexes show high levels of uptake into 2008 cells, when administered at 100 microM, but significantly reduced uptake in the cisplatin-resistant cell line C13*5 (di-Pt, 66% decrease; tri-Pt, 42%; cisplatin, 86%). Both complexes form very high levels of DNA interstrand cross-links in vitro, with 50% interstrand cross-linking observed at far lower concentrations (di-Pt, 12 nM; tri-Pt, 22 nM) than cisplatin (450 nM). It is proposed that the higher extent of interstrand cross-linking may be due to the rigid nature of the dpzm linking ligand, which prevents the complexes from forming short-range intrastrand adducts, like the GpG adduct formed by cisplatin. The results of this study indicate the importance of the flexibility of the linking ligand for the cytotoxicity of di- and trinuclear platinum anti-cancer complexes.
Original languageEnglish
Pages (from-to)91-98
Number of pages8
JournalAnti-cancer Drug Design
Volume16
Issue number2-3
Publication statusPublished - Apr 2001
Externally publishedYes

Keywords

  • Cellular uptake
  • Cytotoxicity
  • Interstrand cross-linking
  • Multi-nuclear platinum complexes

Cite this