Systemic perturbations of the kynurenine pathway precede progression to dementia independently of amyloid-β

Marcela Cespedes, Kelly R. Jacobs, Paul Maruff, Alan Rembach, Christopher J. Fowler, Brett Trounson, Kelly K. Pertile, Rebecca L. Rumble, Stephanie R. Rainey-Smith, Christopher C. Rowe, Victor L. Villemagne, Pierrick Bourgeat, Chai K. Lim, Pratishtha Chatterjee, Ralph N. Martins, Arne Ittner, Colin L. Masters, James D. Doecke, Gilles J. Guillemin, David B. Lovejoy

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)
98 Downloads (Pure)

Abstract

Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-β and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings.

Original languageEnglish
Article number105783
Pages (from-to)1-9
Number of pages9
JournalNeurobiology of Disease
Volume171
Early online date5 Jun 2022
DOIs
Publication statusPublished - Sept 2022

Bibliographical note

Copyright 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • Alzheimer's disease
  • Blood-based biomarkers
  • Clinical progressors
  • Dementia
  • Kynurenine pathway
  • Neuroinflammation

Fingerprint

Dive into the research topics of 'Systemic perturbations of the kynurenine pathway precede progression to dementia independently of amyloid-β'. Together they form a unique fingerprint.

Cite this