Targeted aspects oriented topic modeling for short texts

Jin He, Lei Li*, Yan Wang, Xindong Wu

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Topic modeling has demonstrated its value in short text topic discovery. For this task, a common way adopted by many topic models is to perform a full analysis to find all the possible topics. However, these topic models overlook the importance of deeper topics, leading to confusing topics discovered. In practice, people always tend to find more focused topics on some special aspects (or events), rather than a set of coarse topics. Therefore, in this paper, we propose a novel method, Targeted Aspects Oriented Topic Modeling (TATM), to discover more focused topics on specific aspects in short texts. Specifically, each short text is assigned to only one targeted aspect derived from an enhanced Dirichlet Multinomial Mixture process (E-DMM). This process helps group similar words as many as possible, which achieves topic homogeneity. In addition, TATM discovers the topics for each targeted aspect from as many angles as possible by performing target-level modeling, which achieves topic completeness. Thus, TATM can make a balance between the two conflicting properties without employing any additional information or pre-trained knowledge. The extensive experiments conducted on five real-world datasets demonstrate that our proposed model can effectively discover more focused and complete topics, and it outperforms the state-of-the-art baselines.

Original languageEnglish
Pages (from-to)2384-2399
Number of pages16
JournalApplied Intelligence
Volume50
Issue number8
DOIs
Publication statusPublished - Aug 2020

Keywords

  • Focused analysis
  • Short text clustering
  • Text mining
  • Topic modeling

Fingerprint Dive into the research topics of 'Targeted aspects oriented topic modeling for short texts'. Together they form a unique fingerprint.

Cite this